Nothing Special   »   [go: up one dir, main page]

Skip to main content

DentalPointNet: Landmark Localization on High-Resolution 3D Digital Dental Models

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 (MICCAI 2022)

Abstract

Dental landmark localization is an essential step for analyzing dental models in orthodontic treatment planning and orthognathic surgery. Typically, more than 60 landmarks need to be manually digitized on a 3D dental surface model. However, most existing landmark localization methods are unable to perform reliably especially for partially edentulous patients with missing landmarks. In this work, we propose a deep learning framework, DentalPointNet, to automatically locate 68 landmarks on high-resolution dental surface models. Landmark area proposals are first predicted by a curvature-constrained region proposal network. Each proposal is then refined for landmark localization using a bounding box refinement network. Evaluation using 77 real-patient high-resolution dental surface models indicates that our approach achieves an average localization error of 0.24 mm, a false positive rate of 1% and a false negative rate of 2% on subjects both with or without partial edentulous, significantly outperforming relevant start-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xia, J.J., Gateno, J., Teichgraeber, J.F.: A new clinical protocol to evaluate cranio-maxillofacial deformity and to plan surgical correction. J. Oral Maxillofac. Surg. 67(10), 2093–2106 (2009)

    Article  Google Scholar 

  2. Payer, C., Štern, D., Bischof, H., Urschler, M.: Regressing heatmaps for multiple landmark localization using CNNs. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 230–238. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_27

    Chapter  Google Scholar 

  3. Zhang, J., et al.: Joint craniomaxillofacial bone segmentation and landmark digitization by context-guided fully convolutional networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 720–728. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_81

    Chapter  Google Scholar 

  4. Chen, X., et al.: Fast and accurate craniomaxillofacial landmark detection via 3D faster R-CNN. IEEE Trans. Med. Imaging 40(12), 3867–3878 (2021)

    Article  Google Scholar 

  5. Wang X., Yang, X., Dou, H., Li, S., Heng, P.A., Ni, D.: Joint segmentation and landmark localization of fetal femur in ultrasound volumes. In: IEEE International Conference on Biomedical & Health Informatics, pp. 1–5 (2019)

    Google Scholar 

  6. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in ametric space. In: NeurIPS, pp. 5099–5108 (2017)

    Google Scholar 

  7. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR, pp. 652–660 (2017)

    Google Scholar 

  8. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: CVPR, pp. 9621–9630 (2019)

    Google Scholar 

  9. Lian, C., et al.: Deep multi-scale mesh feature learning for automated labeling of raw dental surfaces from 3D intraoral scanners. IEEE Trans. Med. Imaging 39(7), 2440–2450 (2020)

    Article  Google Scholar 

  10. Lang, Y., et al.: DLLNet: an attention-based deep learning method for dental landmark localization on high-resolution 3D digital dental models. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12904, pp. 478–487. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87202-1_46

    Chapter  Google Scholar 

  11. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019)

    Google Scholar 

Download references

Acknowledgment

This work was supported in part by United States National Institutes of Health (NIH) grants R01 DE022676, R01 DE027251, and R01 DE021863.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pew-Thian Yap or James J. Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lang, Y. et al. (2022). DentalPointNet: Landmark Localization on High-Resolution 3D Digital Dental Models. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds) Medical Image Computing and Computer Assisted Intervention – MICCAI 2022. MICCAI 2022. Lecture Notes in Computer Science, vol 13432. Springer, Cham. https://doi.org/10.1007/978-3-031-16434-7_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16434-7_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16433-0

  • Online ISBN: 978-3-031-16434-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics