Nothing Special   »   [go: up one dir, main page]

Skip to main content

Financial Process Mining Characteristics

  • Conference paper
  • First Online:
Information and Software Technologies (ICIST 2022)

Abstract

The purpose of this paper is to present continuous results of the research in financial data analysis. Many organizations face challenges by processing a colossal quantity of financial data for evaluation of the current state of the organization, for analysis of future strategies and other purposes. One of the possible ways to analyse financial data is to use process mining techniques. This paper proceeds with analysis and usage of financial data cubes dimensions using General Ledger information of particular organizations in the Netherlands. The research project is funded by European Regional Development Fund according to the 2014–2020 Operational Programme for the European Union Funds’ Investments under measure No. 01.2.1-LVPA-T-848 “Smart FDI”. Project no.: 01.2.1-LVPA-T-848–02-0004; Period of project implementation: 2020–06-01–2022–05-31.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Berlin, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

    Book  MATH  Google Scholar 

  2. Aalst, W.M.P.: Process cubes: slicing, dicing, rolling up and drilling down event data for process mining. In: Song, M., Wynn, M.T., Liu, J. (eds.) AP-BPM 2013. LNBIP, vol. 159, pp. 1–22. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02922-1_1

    Chapter  Google Scholar 

  3. Aalst, W.V., Kees, M.V., Werf, J.M.V., Verdonk, M.: Finance process mining auditing 2.0: using process mining to support tomorrow’s auditor. Computer 43(3), (2010) http://www.padsweb.rwth-aachen.de/wvdaalst/publications/p593.pdf

  4. Adriansyah, A., Buijs, J.C.A.M.: Mining process performance from event logs. In: La Rosa, M., Soffer, P. (eds.) Business Process Management Workshops, pp. 217–218. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36285-9_23

    Chapter  Google Scholar 

  5. Abdulrahman, A.: Audit focused process mining: the evolution of process mining and internal control. PhD Thesis (2019). https://rucore.libraries.rutgers.edu/rutgers-lib/60514/PDF/1/play/

  6. Das, K., Schneider, J.: Detecting anomalous records in categorical datasets. In: Proceedings of the 13th ACM SIGKDD international conference on Knowledge Discovery and Data Mining August 2007 pp.220–229 https://doi.org/10.1145/1281192.1281219

  7. Earley, C.E.: Data analytics in auditing: opportunities and challenges. Bus. Horiz. 58, 493—500 (2015)

    Google Scholar 

  8. Debreceny, R.S., Gray, G.L.: Data mining journal entries for fraud detection: an exploratory study. Int. J. Acc. Inf. Syst. 11(3), 157–181 (2010)

    Article  Google Scholar 

  9. Amani, F.A., Fadlalla, A.M.: Data mining applications in accounting: A review of the literature and organizing framework. Int. J. Acc. Inf. Syst. 24, 32–58 (2017)

    Article  Google Scholar 

  10. Frederik, G., Guido, G.: Business process modeling: an accounting information systems perspective. Int. J. Acc. Inf. Syst. 15(3), 185–192 (2014). https://doi.org/10.1016/j.accinf.2014.08.001

    Article  Google Scholar 

  11. Gehrke, N., Mueller-Wickop, N.: Basic principles of financial process mining a journey through financial data in accounting information systems. Association for Information Systems AIS Electronic Library (AISeL) (2010)

    Google Scholar 

  12. Gepp, A., Linnenluecke, M.K., O’Neill, T.J., Smith, T.: Big data techniques in auditing research and practice: current trends and future opportunities. J. Acc. Lit. 40, 102–115 (2018)

    Google Scholar 

  13. Gosselin, M.: An empirical study of performance measurement in manufacturing firms. Int. J. Product. Perform. Manag. 54(5/6), 419–437 (2005). https://doi.org/10.1108/17410400510604566

    Article  Google Scholar 

  14. vom Brocke, J., Rosemann, M. (eds.): Handbook on Business Process Management 2. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-01982-1

    Book  Google Scholar 

  15. Lopata, A., et al.: Financial data preprocessing Issues. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds.) ICIST 2021. CCIS, vol. 1486, pp. 60–71. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88304-1_5

    Chapter  Google Scholar 

  16. Mamaliga, T.: Realizing a process cube allowing for the comparison of event data. Master Thesis. Eindhoven University of Technology (2013)

    Google Scholar 

  17. Mieke, J., Alles, M., and Vasarhelyi, M.: The case for process mining in auditing: sources of value added and areas of application. Int. J. Acc. Inf. Syst. 14(1), 1–20 (2013). https://doi.org/10.1016/j.accinf.2012.06.015.

  18. OLAP Council, OLAP: On-Line Analytical Processing. http://www.olapcouncil.org/research/glossaryly.htm Accessed 21 Feb 2022

  19. Werner, M., Gehrke, N., and Nuttgens, M.: Business process mining and reconstruction for financial audits. In: 45th Hawaii International Conference on System Sciences, pp. 5350–5359 (2012). https://doi.org/10.1109/HICSS.2012.141

  20. Werner, M.: Financial process mining - accounting data structure dependent control flow inference. Int. J. Acc. Inf. Syst. 25, 57–80 (2017). https://doi.org/10.1016/j.accinf.2017.03.004

    Article  Google Scholar 

Download references

Acknowledgments

This paper presents the primary results of the research project “Enterprise Financial Performance Data Analysis Tools Platform (AIFA)”. The research project is funded by European Regional Development Fund according to the 2014–2020 Operational Programme for the European Union Funds’ Investments under measure No. 01.2.1-LVPA-T-848 “Smart FDI”. Project no.: 01.2.1-LVPA-T-848–02-0004; Period of project implementation: 2020–06-01 – 2022–05-31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilona Veitaitė .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopata, A. et al. (2022). Financial Process Mining Characteristics. In: Lopata, A., Gudonienė, D., Butkienė, R. (eds) Information and Software Technologies. ICIST 2022. Communications in Computer and Information Science, vol 1665. Springer, Cham. https://doi.org/10.1007/978-3-031-16302-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-16302-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-16301-2

  • Online ISBN: 978-3-031-16302-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics