Abstract
A distributed point function (DPF) is a cryptographic primitive that enables compressed additive sharing of a secret unit vector across two or more parties. Despite growing ubiquity within applications and notable research efforts, the best 2-party DPF construction to date remains the tree-based construction from (Boyle et al., CCS’16), with no significantly new approaches since.
We present a new framework for 2-party DPF construction, which applies in the setting of feasible (polynomial-size) domains. This captures in particular all DPF applications in which the keys are expanded to the full domain. Our approach is motivated by a strengthened notion we put forth, of programmable DPF (PDPF): in which a short, input-independent “offline” key can be reused for sharing many point functions.
-
PDPF from OWF. We construct a PDPF for feasible domains from the minimal assumption that one-way functions exist, where the second “online” key size is polylogarithmic in the domain size N.
Our approach offers multiple new efficiency features and applications:
-
Privately puncturable PRFs. Our PDPF gives the first OWF-based privately puncturable PRFs (for feasible domains) with sublinear keys.
-
O(1)-round distributed DPF Gen. We obtain a (standard) DPF with polylog-size keys that admits an analog of Doerner-shelat (CCS’17) distributed key generation, requiring only O(1) rounds (versus \(\log N\)).
-
PCG with 1 short key. Compressing useful correlations for secure computation, where one key is of minimal size. This provides up to exponential communication savings in some application scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Slightly more generally, \(f_{\alpha ,\beta }\) with \(f_{\alpha ,\beta }(\alpha ) = \beta \) for \(\beta \in \{0,1\}\).
- 2.
Or rather, \(\lambda \) bits, where \(\lambda \) is the security parameter.
- 3.
- 4.
DPFs with significantly worse key size \(N^\epsilon \) for constant \(\epsilon > 0\) can be built with lower depth \(\textsf{Gen}\), e.g. by “flattening” the tree structure of current best DPF constructions.
- 5.
In this approach, to get statistical error of \(\epsilon \) we need to reduce the value of \(\epsilon \) in each of the \(\ell \) instances by a factor of \(\ell \). Since the computational cost per instance depends quadratically on \(1/\epsilon \), this results in a total slowdown (compared to the 1-bit baseline) of \(\ell \cdot \ell ^2=\ell ^3\).
- 6.
To account for the fact that the payload could be \(\beta =0\), we actually introduce dummy bucket \(N+1\) to the PRF output space; removing a ball from this bucket means that all [N] buckets remain equal across parties.
- 7.
Note that d is non-cryptographic. Concretely, for the case of Reed-Muller locally decodable codes, the mapping d corresponds to effectively generating Shamir secret shares of the input value \(\alpha \).
- 8.
This secret sharing can be over \(\mathbb {Z}_N\), bitwise over \(\mathbb {Z}_2\), or otherwise, with insignificant effect for the given protocol. We describe w.r.t. shares over \(\mathbb {Z}_N\) for simplicity.
References
Abraham, I., Pinkas, B., Yanai, A.: Blinder - scalable, robust anonymous committed broadcast. In: CCS 2020, pp. 1233–1252 (2020)
Agrawal, N., Shamsabadi, A.S., Kusner, M.J., Gascón, A.: QUOTIENT: two-party secure neural network training and prediction. In: ACM CCS 2019, pp. 1231–1247 (2019)
Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight techniques for private heavy hitters, pp. 762–776 (2021)
Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_15
Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_17
Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15
Boyle, E., et al.: Function secret sharing for mixed-mode and fixed-point secure computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 871–900. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_30
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 896–912 (2018)
Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS. ACM (2019)
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: CCS (2016)
Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_14
Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29
Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 662–693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_22
Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10
Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC\(^1\) from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_16
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 41–50. IEEE (1995)
Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2017), pp. 259–282 (2017)
Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging system handling millions of users. In: 2015 IEEE Symposium on Security and Privacy, pp. 321–338. IEEE (2015)
Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 44–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_3
Couteau, G.: A note on the communication complexity of multiparty computation in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_17
Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for 2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_6
Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private information retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_10
Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 523–535 (2017)
Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_24
Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)
Gupta, T., Crooks, N., Mulhern, W., Setty, S.T.V., Alvisi, L., Walfish, M.: Scalable and private media consumption with Popcorn. In: USENIX (2016)
Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_34
Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: CCS 2013, pp. 669–684
Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_8
Maurer, U., Tessaro, S.: A hardcore lemma for computational indistinguishability: security amplification for arbitrarily weak PRGs with optimal stretch. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_15
Newman, Z., Servan-Schreiber, S., Devadas, S.: Spectrum: High-bandwidth anonymous broadcast with malicious security. IACR Cryptology ePrint Archive, p. 325 (2021)
Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: STOC 1997, pp. 294–303 (1997)
Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 675–701. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_23
Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE: improved constructions and implementation. In: ACM CCS, pp. 1055–1072 (2019)
Shi, E., Aqeel, W., Chandrasekaran, B., Maggs, B.: Puncturable pseudorandom sets and private information retrieval with near-optimal online bandwidth and time. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 641–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_22
Acknowledgements
We thank the CRYPTO reviewers for many useful comments and suggestions, including a simplification of the proof of Theorem 4. Elette Boyle was supported by AFOSR Award FA9550-21-1-0046, ERC Project HSS (852952), ERC Project NTSC (742754), and a Google Research Scholar Award. Niv Gilboa was supported by ISF grant 2951/20, ERC grant 876110, and a grant by the BGU Cyber Center. Yuval Ishai was supported by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant 2774/20. Victor I. Kolobov was supported by ERC Project NTSC (742754) and ISF grant 2774/20.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Boyle, E., Gilboa, N., Ishai, Y., Kolobov, V.I. (2022). Programmable Distributed Point Functions. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13510. Springer, Cham. https://doi.org/10.1007/978-3-031-15985-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-15985-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15984-8
Online ISBN: 978-3-031-15985-5
eBook Packages: Computer ScienceComputer Science (R0)