Nothing Special   »   [go: up one dir, main page]

Skip to main content

Programmable Distributed Point Functions

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13510))

Included in the following conference series:

Abstract

A distributed point function (DPF) is a cryptographic primitive that enables compressed additive sharing of a secret unit vector across two or more parties. Despite growing ubiquity within applications and notable research efforts, the best 2-party DPF construction to date remains the tree-based construction from (Boyle et al., CCS’16), with no significantly new approaches since.

We present a new framework for 2-party DPF construction, which applies in the setting of feasible (polynomial-size) domains. This captures in particular all DPF applications in which the keys are expanded to the full domain. Our approach is motivated by a strengthened notion we put forth, of programmable DPF (PDPF): in which a short, input-independent “offline” key can be reused for sharing many point functions.

  • PDPF from OWF. We construct a PDPF for feasible domains from the minimal assumption that one-way functions exist, where the second “online” key size is polylogarithmic in the domain size N.

Our approach offers multiple new efficiency features and applications:

  • Privately puncturable PRFs. Our PDPF gives the first OWF-based privately puncturable PRFs (for feasible domains) with sublinear keys.

  • O(1)-round distributed DPF Gen. We obtain a (standard) DPF with polylog-size keys that admits an analog of Doerner-shelat (CCS’17) distributed key generation, requiring only O(1) rounds (versus \(\log N\)).

  • PCG with 1 short key. Compressing useful correlations for secure computation, where one key is of minimal size. This provides up to exponential communication savings in some application scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Slightly more generally, \(f_{\alpha ,\beta }\) with \(f_{\alpha ,\beta }(\alpha ) = \beta \) for \(\beta \in \{0,1\}\).

  2. 2.

    Or rather, \(\lambda \) bits, where \(\lambda \) is the security parameter.

  3. 3.

    In fact, the naive construction, as mentioned in Sect. 1.1, can provide a negligible privacy error for small output groups. Nevertheless, in aggregation-type applications, over output group \(\mathbb {Z}\), we get a constant privacy error. See Remark 3 for more details.

  4. 4.

    DPFs with significantly worse key size \(N^\epsilon \) for constant \(\epsilon > 0\) can be built with lower depth \(\textsf{Gen}\), e.g. by “flattening” the tree structure of current best DPF constructions.

  5. 5.

    In this approach, to get statistical error of \(\epsilon \) we need to reduce the value of \(\epsilon \) in each of the \(\ell \) instances by a factor of \(\ell \). Since the computational cost per instance depends quadratically on \(1/\epsilon \), this results in a total slowdown (compared to the 1-bit baseline) of \(\ell \cdot \ell ^2=\ell ^3\).

  6. 6.

    To account for the fact that the payload could be \(\beta =0\), we actually introduce dummy bucket \(N+1\) to the PRF output space; removing a ball from this bucket means that all [N] buckets remain equal across parties.

  7. 7.

    Note that d is non-cryptographic. Concretely, for the case of Reed-Muller locally decodable codes, the mapping d corresponds to effectively generating Shamir secret shares of the input value \(\alpha \).

  8. 8.

    This secret sharing can be over \(\mathbb {Z}_N\), bitwise over \(\mathbb {Z}_2\), or otherwise, with insignificant effect for the given protocol. We describe w.r.t. shares over \(\mathbb {Z}_N\) for simplicity.

References

  1. Abraham, I., Pinkas, B., Yanai, A.: Blinder - scalable, robust anonymous committed broadcast. In: CCS 2020, pp. 1233–1252 (2020)

    Google Scholar 

  2. Agrawal, N., Shamsabadi, A.S., Kusner, M.J., Gascón, A.: QUOTIENT: two-party secure neural network training and prediction. In: ACM CCS 2019, pp. 1231–1247 (2019)

    Google Scholar 

  3. Boneh, D., Boyle, E., Corrigan-Gibbs, H., Gilboa, N., Ishai, Y.: Lightweight techniques for private heavy hitters, pp. 762–776 (2021)

    Google Scholar 

  4. Boneh, D., Kim, S., Montgomery, H.: Private puncturable PRFs from standard lattice assumptions. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 415–445. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_15

    Chapter  Google Scholar 

  5. Boneh, D., Lewi, K., Wu, D.J.: Constraining pseudorandom functions privately. In: Fehr, S. (ed.) PKC 2017, Part II. LNCS, vol. 10175, pp. 494–524. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54388-7_17

    Chapter  Google Scholar 

  6. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013, Part II. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15

    Chapter  Google Scholar 

  7. Boyle, E., et al.: Function secret sharing for mixed-mode and fixed-point secure computation. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part II. LNCS, vol. 12697, pp. 871–900. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_30

    Chapter  Google Scholar 

  8. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 896–912 (2018)

    Google Scholar 

  9. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS. ACM (2019)

    Google Scholar 

  10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_14

    Chapter  Google Scholar 

  11. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  12. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: CCS (2016)

    Google Scholar 

  13. Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function secret sharing. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part I. LNCS, vol. 11891, pp. 341–371. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_14

    Chapter  Google Scholar 

  14. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

    Chapter  Google Scholar 

  15. Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 662–693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_22

    Chapter  Google Scholar 

  16. Brakerski, Z., Tsabary, R., Vaikuntanathan, V., Wee, H.: Private constrained PRFs (and more) from LWE. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part I. LNCS, vol. 10677, pp. 264–302. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70500-2_10

    Chapter  Google Scholar 

  17. Canetti, R., Chen, Y.: Constraint-hiding constrained PRFs for NC\(^1\) from LWE. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 446–476. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_16

    Chapter  Google Scholar 

  18. Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp. 41–50. IEEE (1995)

    Google Scholar 

  19. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI 2017), pp. 259–282 (2017)

    Google Scholar 

  20. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging system handling millions of users. In: 2015 IEEE Symposium on Security and Privacy, pp. 321–338. IEEE (2015)

    Google Scholar 

  21. Corrigan-Gibbs, H., Kogan, D.: Private information retrieval with sublinear online time. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part I. LNCS, vol. 12105, pp. 44–75. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_3

    Chapter  Google Scholar 

  22. Couteau, G.: A note on the communication complexity of multiparty computation in the correlated randomness model. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part II. LNCS, vol. 11477, pp. 473–503. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_17

    Chapter  MATH  Google Scholar 

  23. Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The TinyTable protocol for 2-party secure computation, or: gate-scrambling revisited. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part I. LNCS, vol. 10401, pp. 167–187. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_6

    Chapter  Google Scholar 

  24. Di Crescenzo, G., Malkin, T., Ostrovsky, R.: Single database private information retrieval implies oblivious transfer. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 122–138. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_10

    Chapter  Google Scholar 

  25. Doerner, J., Shelat, A.: Scaling ORAM for secure computation. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 523–535 (2017)

    Google Scholar 

  26. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_24

    Chapter  Google Scholar 

  27. Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35

    Chapter  Google Scholar 

  28. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  29. Gupta, T., Crooks, N., Mulhern, W., Setty, S.T.V., Alvisi, L., Walfish, M.: Scalable and private media consumption with Popcorn. In: USENIX (2016)

    Google Scholar 

  30. Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated randomness in secure computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 600–620. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_34

    Chapter  MATH  Google Scholar 

  31. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: CCS 2013, pp. 669–684

    Google Scholar 

  32. Maurer, U., Pietrzak, K., Renner, R.: Indistinguishability amplification. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 130–149. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_8

    Chapter  Google Scholar 

  33. Maurer, U., Tessaro, S.: A hardcore lemma for computational indistinguishability: security amplification for arbitrarily weak PRGs with optimal stretch. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 237–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_15

    Chapter  Google Scholar 

  34. Newman, Z., Servan-Schreiber, S., Devadas, S.: Spectrum: High-bandwidth anonymous broadcast with malicious security. IACR Cryptology ePrint Archive, p. 325 (2021)

    Google Scholar 

  35. Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: STOC 1997, pp. 294–303 (1997)

    Google Scholar 

  36. Peikert, C., Shiehian, S.: Privately constraining and programming PRFs, the LWE way. In: Abdalla, M., Dahab, R. (eds.) PKC 2018, Part II. LNCS, vol. 10770, pp. 675–701. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76581-5_23

    Chapter  Google Scholar 

  37. Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-OLE: improved constructions and implementation. In: ACM CCS, pp. 1055–1072 (2019)

    Google Scholar 

  38. Shi, E., Aqeel, W., Chandrasekaran, B., Maggs, B.: Puncturable pseudorandom sets and private information retrieval with near-optimal online bandwidth and time. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part IV. LNCS, vol. 12828, pp. 641–669. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84259-8_22

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank the CRYPTO reviewers for many useful comments and suggestions, including a simplification of the proof of Theorem 4. Elette Boyle was supported by AFOSR Award FA9550-21-1-0046, ERC Project HSS (852952), ERC Project NTSC (742754), and a Google Research Scholar Award. Niv Gilboa was supported by ISF grant 2951/20, ERC grant 876110, and a grant by the BGU Cyber Center. Yuval Ishai was supported by ERC Project NTSC (742754), BSF grant 2018393, and ISF grant 2774/20. Victor I. Kolobov was supported by ERC Project NTSC (742754) and ISF grant 2774/20.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor I. Kolobov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boyle, E., Gilboa, N., Ishai, Y., Kolobov, V.I. (2022). Programmable Distributed Point Functions. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13510. Springer, Cham. https://doi.org/10.1007/978-3-031-15985-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15985-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15984-8

  • Online ISBN: 978-3-031-15985-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics