Abstract
Non-malleable zero-knowledge, originally introduced in the context of man-in-the-middle attacks, serves as an important building block to protect against concurrent attacks where different protocols may coexist and interleave. While this primitive admits almost optimal constructions in the plain model, they are several orders of magnitude slower in practice than standalone zero-knowledge. This is in sharp contrast to non-malleable commitments where practical constructions (under the DDH assumption) have been known for a while.
We present a new approach for constructing efficient non-malleable zero-knowledge for all languages in \(\mathcal{N}\mathcal{P}\), based on a new primitive called instance-based non-malleable commitment (\(\textsf{IB}\text {-}\textsf{NMC}\)). We show how to construct practical \(\textsf{IB}\text {-}\textsf{NMC}\) by leveraging the fact that simulators of sub-linear zero-knowledge protocols can be much faster than the honest prover algorithm. With an efficient implementation of \(\textsf{IB}\text {-}\textsf{NMC}\), our approach yields the first general-purpose non-malleable zero-knowledge protocol that achieves practical efficiency in the plain model.
All of our protocols can be instantiated from symmetric primitives such as block-ciphers and collision-resistant hash functions, have reasonable efficiency in practice, and are general-purpose. Our techniques also yield the first efficient non-malleable commitment scheme without public-key assumptions.
This material is based upon work supported in part by DARPA SIEVE Award HR00112020026, NSF CAREER Award 2144303, NSF grants 1907908, 2028920, 2106263, and 2128187. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government, DARPA, or NSF.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Although details may vary, known protocols in this paradigm generally require some form of non-algebraic consistency proof over a non-malleable commitment supporting large identities and message spaces.
- 2.
- 3.
The analysis in [68] does not separate identity lengths from security levels; it further provides only asymptotic analysis which hides multiplicative constants and does not specify the exact negligible and super-logarithmic functions. This makes it difficult to assess the security level supported by their protocol. If the analysis is performed to support \(\lambda \)-bit security and k-bit identities, the overhead is at least \(20k\lambda \log \lambda \) group exponentiations.
- 4.
We remark that statement \(\widetilde{x}\) may be chosen either adaptively depending on the left execution, or statically by announcing it before the left execution begins.
- 5.
We remark that [2] also presented another approach—applying Fiat-Shamir transformation to their ZKIPCP will give a (fully) ZK protocol directly; moreover, the resulting protocol will be non-interactive. But this approach is irrelevant in the current paper as we are interested in constructions in the plain model (without random oracles).
- 6.
Recall that the language \(L^\rho _{\textsf{consis}}\) is defined toward the end of \(\mathrm {\Pi } ^\textsf{Mini}_\textsc {bgrrv} \) (Protocol 1).
- 7.
Note that \((h_1, b_1, \widetilde{b}_1)\) and \((h_2, b_2, \widetilde{b}_2)\) will be known to V when the protocol reaches the final \(\textsf{sWIAoK}\) stage.
- 8.
We warn that this version cannot be used in our \(\textsf{NMZK}\) protocol yet. See Sect. 5.4.
References
Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 774–783. ACM Press, May/June 2014. https://doi.org/10.1145/2591796.2591804
Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October/November 2017. https://doi.org/10.1145/3133956.3134104
Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_16
Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, pp. 106–115. IEEE Computer Society Press, October 2001. https://doi.org/10.1109/SFCS.2001.959885
Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: 43rd FOCS, pp. 345–355. IEEE Computer Society Press, November 2002. https://doi.org/10.1109/SFCS.2002.1181957
Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)
Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: 47th FOCS, pp. 345–354. IEEE Computer Society Press, October 2006. https://doi.org/10.1109/FOCS.2006.21
Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993. https://doi.org/10.1145/168588.168596
Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of probabilistically-checkable proofs. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 585–594. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488681
Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable hash and one-way functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 524–541. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_31
Brenner, H., Goyal, V., Richelson, S., Rosen, A., Vald, M.: Fast non-malleable commitments. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1048–1057. ACM Press, October 2015. https://doi.org/10.1145/2810103.2813721
Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concurrently composable security with shielded super-polynomial simulators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10210, pp. 351–381. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_13
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006
Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001. https://doi.org/10.1109/SFCS.2001.959888
Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4
Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052229
Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998. https://doi.org/10.1145/276698.276741
Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Computer Society Press, October 2010. https://doi.org/10.1109/FOCS.2010.86
Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press, May 2002. https://doi.org/10.1145/509907.509980
Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 291–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_11
Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_5
Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19
Damgård, I.: On \(\sigma \)-protocols (2002). http://www.cs.au.dk/~ivan/Sigma.pdf
Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable commitment. In: 30th ACM STOC, pp. 141–150. ACM Press, May 1998. https://doi.org/10.1145/276698.276722
Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_4
Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 601–610. ACM Press, May/June 2009. https://doi.org/10.1145/1536414.1536496
Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991. https://doi.org/10.1145/103418.103474
Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th FOCS, pp. 523–534. IEEE Computer Society Press, October 1999. https://doi.org/10.1109/SFFCS.1999.814626
Dwork, C., Sahai, A.: Concurrent zero-knowledge: reducing the need for timing constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 442–457. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055746
Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. ICS, pp. 434–452 (2010)
Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_5
Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_1
Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_16
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993651
Giacomelli, I., Madsen, J., Orlandi, C.: ZKboo: faster zero-knowledge for boolean circuits. In: 25th USENIX Security Symposium (USENIX Security 2016), pp. 1069–1083 (2016)
Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge University Press, Cambridge (2001)
Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)
Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167–189 (1996). https://doi.org/10.1007/BF00208001
Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207
Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press, October 2003. https://doi.org/10.1109/SFCS.2003.1238185
Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993729
Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Society Press, October 2012. https://doi.org/10.1109/FOCS.2012.47
Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1128–1141. ACM Press, June 2016. https://doi.org/10.1145/2897518.2897657
Goyal, V., Richelson, S.: Non-malleable commitments using goldreich-levin list decoding. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 686–699. IEEE (2019)
Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-malleability. In: 55th FOCS, pp. 41–50. IEEE Computer Society Press, October 2014. https://doi.org/10.1109/FOCS.2014.13
Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_9
Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with zero-knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_6
Jain, A., Pandey, O.: Non-malleable zero knowledge: black-box constructions and definitional relationships. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 435–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_25
Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_36
Khurana, D.: Round optimal concurrent non-malleability from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 139–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_5
Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In: Umans, C. (ed.) 58th FOCS, pp. 564–575. IEEE Computer Society Press, October 2017. https://doi.org/10.1109/FOCS.2017.58
Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.org/10.1145/129712.129782
Kim, A., Liang, X., Pandey, O.: A new approach to efficient non-malleable zero-knowledge. Cryptology ePrint Archive, Paper 2022/767 (2022). https://eprint.iacr.org/2022/767
Kiyoshima, S.: Round-efficient black-box construction of composable multi-party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_20
Lin, H., Pass, R.: Non-malleability amplification. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 189–198. ACM Press, May/June 2009. https://doi.org/10.1145/1536414.1536442
Lin, H., Pass, R.: Concurrent non-malleable zero knowledge with adaptive inputs. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 274–292. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_17
Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 705–714. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993730
Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-malleable commitments from time-lock puzzles. In: Umans, C. (ed.) 58th FOCS, pp. 576–587. IEEE Computer Society Press, October 2017. https://doi.org/10.1109/FOCS.2017.59
Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent non-malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 429–446. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_23
Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_31
Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Computer Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746
Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: 47th FOCS, pp. 367–378. IEEE Computer Society Press, October 2006. https://doi.org/10.1109/FOCS.2006.43
Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_9
Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_13
Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6
Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_8
O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30
Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_32
Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive One-Way Functions and Applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_4
Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_19
Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10
Pass, R.: Concurrent security and non-malleability. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 540–540. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_32
Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th FOCS, pp. 563–572. IEEE Computer Society Press, October 2005. https://doi.org/10.1109/SFCS.2005.27
Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 533–542. ACM Press, May 2005. https://doi.org/10.1145/1060590.1060670
Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_24
Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC. pp. 242–251. ACM Press, June 2004. https://doi.org/10.1145/1007352.1007394
Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press, October 1999. https://doi.org/10.1109/SFFCS.1999.814628
Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press, May/June 2014. https://doi.org/10.1145/2591796.2591825
Unruh, D.: Random Oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_12
Wee, H.: Zero knowledge in the random Oracle model, revisited. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_25
Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press, October 2010. https://doi.org/10.1109/FOCS.2010.87
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Kim, A., Liang, X., Pandey, O. (2022). A New Approach to Efficient Non-Malleable Zero-Knowledge. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13510. Springer, Cham. https://doi.org/10.1007/978-3-031-15985-5_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-15985-5_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15984-8
Online ISBN: 978-3-031-15985-5
eBook Packages: Computer ScienceComputer Science (R0)