Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Approach to Efficient Non-Malleable Zero-Knowledge

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2022 (CRYPTO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13510))

Included in the following conference series:

Abstract

Non-malleable zero-knowledge, originally introduced in the context of man-in-the-middle attacks, serves as an important building block to protect against concurrent attacks where different protocols may coexist and interleave. While this primitive admits almost optimal constructions in the plain model, they are several orders of magnitude slower in practice than standalone zero-knowledge. This is in sharp contrast to non-malleable commitments where practical constructions (under the DDH assumption) have been known for a while.

We present a new approach for constructing efficient non-malleable zero-knowledge for all languages in \(\mathcal{N}\mathcal{P}\), based on a new primitive called instance-based non-malleable commitment (\(\textsf{IB}\text {-}\textsf{NMC}\)). We show how to construct practical \(\textsf{IB}\text {-}\textsf{NMC}\) by leveraging the fact that simulators of sub-linear zero-knowledge protocols can be much faster than the honest prover algorithm. With an efficient implementation of \(\textsf{IB}\text {-}\textsf{NMC}\), our approach yields the first general-purpose non-malleable zero-knowledge protocol that achieves practical efficiency in the plain model.

All of our protocols can be instantiated from symmetric primitives such as block-ciphers and collision-resistant hash functions, have reasonable efficiency in practice, and are general-purpose. Our techniques also yield the first efficient non-malleable commitment scheme without public-key assumptions.

This material is based upon work supported in part by DARPA SIEVE Award HR00112020026, NSF CAREER Award 2144303, NSF grants 1907908, 2028920, 2106263, and 2128187. Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the United States Government, DARPA, or NSF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Although details may vary, known protocols in this paradigm generally require some form of non-algebraic consistency proof over a non-malleable commitment supporting large identities and message spaces.

  2. 2.

    We remark that for non-malleable commitments based on non-malleable codes such as [43], it is hard to estimate the overall complexity; the asymptotic analysis of underlying codes such as [1] has astronomically large constants, making them unsuitable in practice.

  3. 3.

    The analysis in [68] does not separate identity lengths from security levels; it further provides only asymptotic analysis which hides multiplicative constants and does not specify the exact negligible and super-logarithmic functions. This makes it difficult to assess the security level supported by their protocol. If the analysis is performed to support \(\lambda \)-bit security and k-bit identities, the overhead is at least \(20k\lambda \log \lambda \) group exponentiations.

  4. 4.

    We remark that statement \(\widetilde{x}\) may be chosen either adaptively depending on the left execution, or statically by announcing it before the left execution begins.

  5. 5.

    We remark that [2] also presented another approach—applying Fiat-Shamir transformation to their ZKIPCP will give a (fully) ZK protocol directly; moreover, the resulting protocol will be non-interactive. But this approach is irrelevant in the current paper as we are interested in constructions in the plain model (without random oracles).

  6. 6.

    Recall that the language \(L^\rho _{\textsf{consis}}\) is defined toward the end of \(\mathrm {\Pi } ^\textsf{Mini}_\textsc {bgrrv} \) (Protocol 1).

  7. 7.

    Note that \((h_1, b_1, \widetilde{b}_1)\) and \((h_2, b_2, \widetilde{b}_2)\) will be known to V when the protocol reaches the final \(\textsf{sWIAoK}\) stage.

  8. 8.

    We warn that this version cannot be used in our \(\textsf{NMZK}\) protocol yet. See Sect. 5.4.

References

  1. Aggarwal, D., Dodis, Y., Lovett, S.: Non-malleable codes from additive combinatorics. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 774–783. ACM Press, May/June 2014. https://doi.org/10.1145/2591796.2591804

  2. Ames, S., Hazay, C., Ishai, Y., Venkitasubramaniam, M.: Ligero: Lightweight sublinear arguments without a trusted setup. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 2087–2104. ACM Press, October/November 2017. https://doi.org/10.1145/3133956.3134104

  3. Badrinarayanan, S., Goyal, V., Jain, A., Kalai, Y.T., Khurana, D., Sahai, A.: Promise zero knowledge and its applications to round optimal MPC. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part II. LNCS, vol. 10992, pp. 459–487. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_16

    Chapter  Google Scholar 

  4. Barak, B.: How to go beyond the black-box simulation barrier. In: 42nd FOCS, pp. 106–115. IEEE Computer Society Press, October 2001. https://doi.org/10.1109/SFCS.2001.959885

  5. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model. In: 43rd FOCS, pp. 345–355. IEEE Computer Society Press, November 2002. https://doi.org/10.1109/SFCS.2002.1181957

  6. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)

    Article  MathSciNet  Google Scholar 

  7. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent non-malleable zero knowledge. In: 47th FOCS, pp. 345–354. IEEE Computer Society Press, October 2006. https://doi.org/10.1109/FOCS.2006.21

  8. Bellare, M., Rogaway, P.: Random oracles are practical: A paradigm for designing efficient protocols. In: Denning, D.E., Pyle, R., Ganesan, R., Sandhu, R.S., Ashby, V. (eds.) ACM CCS 93, pp. 62–73. ACM Press, November 1993. https://doi.org/10.1145/168588.168596

  9. Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E.: On the concrete efficiency of probabilistically-checkable proofs. In: Boneh, D., Roughgarden, T., Feigenbaum, J. (eds.) 45th ACM STOC, pp. 585–594. ACM Press, June 2013. https://doi.org/10.1145/2488608.2488681

  10. Boldyreva, A., Cash, D., Fischlin, M., Warinschi, B.: Foundations of non-malleable hash and one-way functions. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 524–541. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_31

    Chapter  Google Scholar 

  11. Brenner, H., Goyal, V., Richelson, S., Rosen, A., Vald, M.: Fast non-malleable commitments. In: Ray, I., Li, N., Kruegel, C. (eds.) ACM CCS 2015, pp. 1048–1057. ACM Press, October 2015. https://doi.org/10.1145/2810103.2813721

  12. Broadnax, B., Döttling, N., Hartung, G., Müller-Quade, J., Nagel, M.: Concurrently composable security with shielded super-polynomial simulators. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part II. LNCS, vol. 10210, pp. 351–381. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_13

    Chapter  Google Scholar 

  13. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000). https://doi.org/10.1007/s001459910006

    Article  MathSciNet  MATH  Google Scholar 

  14. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October 2001. https://doi.org/10.1109/SFCS.2001.959888

  15. Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70936-7_4

    Chapter  Google Scholar 

  16. Canetti, R., Dwork, C., Naor, M., Ostrovsky, R.: Deniable encryption. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 90–104. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052229

    Chapter  Google Scholar 

  17. Canetti, R., Goldreich, O., Halevi, S.: The random oracle methodology, revisited (preliminary version). In: 30th ACM STOC, pp. 209–218. ACM Press, May 1998. https://doi.org/10.1145/276698.276741

  18. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. In: 51st FOCS, pp. 541–550. IEEE Computer Society Press, October 2010. https://doi.org/10.1109/FOCS.2010.86

  19. Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally composable two-party and multi-party secure computation. In: 34th ACM STOC, pp. 494–503. ACM Press, May 2002. https://doi.org/10.1145/509907.509980

  20. Rai Choudhuri, A., Ciampi, M., Goyal, V., Jain, A., Ostrovsky, R.: Round optimal secure multiparty computation from minimal assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS, vol. 12551, pp. 291–319. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_11

    Chapter  Google Scholar 

  21. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Four-round concurrent non-malleable commitments from one-way functions. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017, Part II. LNCS, vol. 10402, pp. 127–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_5

    Chapter  Google Scholar 

  22. Cramer, R., Damgård, I., Schoenmakers, B.: Proofs of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_19

    Chapter  Google Scholar 

  23. Damgård, I.: On \(\sigma \)-protocols (2002). http://www.cs.au.dk/~ivan/Sigma.pdf

  24. Di Crescenzo, G., Ishai, Y., Ostrovsky, R.: Non-interactive and non-malleable commitment. In: 30th ACM STOC, pp. 141–150. ACM Press, May 1998. https://doi.org/10.1145/276698.276722

  25. Di Crescenzo, G., Katz, J., Ostrovsky, R., Smith, A.: Efficient and non-interactive non-malleable commitment. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 40–59. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_4

    Chapter  Google Scholar 

  26. Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 601–610. ACM Press, May/June 2009. https://doi.org/10.1145/1536414.1536496

  27. Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography (extended abstract). In: 23rd ACM STOC, pp. 542–552. ACM Press, May 1991. https://doi.org/10.1145/103418.103474

  28. Dwork, C., Naor, M., Reingold, O., Stockmeyer, L.J.: Magic functions. In: 40th FOCS, pp. 523–534. IEEE Computer Society Press, October 1999. https://doi.org/10.1109/SFFCS.1999.814626

  29. Dwork, C., Sahai, A.: Concurrent zero-knowledge: reducing the need for timing constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 442–457. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055746

    Chapter  Google Scholar 

  30. Dziembowski, S., Pietrzak, K., Wichs, D.: Non-malleable codes. ICS, pp. 434–452 (2010)

    Google Scholar 

  31. Faust, S., Kohlweiss, M., Marson, G.A., Venturi, D.: On the non-malleability of the fiat-shamir transform. In: Galbraith, S., Nandi, M. (eds.) INDOCRYPT 2012. LNCS, vol. 7668, pp. 60–79. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34931-7_5

    Chapter  Google Scholar 

  32. Fleischhacker, N., Goyal, V., Jain, A.: On the existence of three round zero-knowledge proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_1

    Chapter  Google Scholar 

  33. Garg, S., Mukherjee, P., Pandey, O., Polychroniadou, A.: The exact round complexity of secure computation. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016, Part II. LNCS, vol. 9666, pp. 448–476. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_16

    Chapter  Google Scholar 

  34. Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993651

  35. Giacomelli, I., Madsen, J., Orlandi, C.: ZKboo: faster zero-knowledge for boolean circuits. In: 25th USENIX Security Symposium (USENIX Security 2016), pp. 1069–1083 (2016)

    Google Scholar 

  36. Goldreich, O.: Foundations of Cryptography: Basic Tools, vol. 1. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  37. Goldreich, O.: Foundations of Cryptography: Basic Applications, vol. 2. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  38. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for NP. J. Cryptol. 9(3), 167–189 (1996). https://doi.org/10.1007/BF00208001

    Article  MathSciNet  MATH  Google Scholar 

  39. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994). https://doi.org/10.1007/BF00195207

    Article  MathSciNet  MATH  Google Scholar 

  40. Goldwasser, S., Kalai, Y.T.: On the (in)security of the Fiat-Shamir paradigm. In: 44th FOCS, pp. 102–115. IEEE Computer Society Press, October 2003. https://doi.org/10.1109/SFCS.2003.1238185

  41. Goyal, V.: Constant round non-malleable protocols using one way functions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 695–704. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993729

  42. Goyal, V., Lee, C.K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach. In: 53rd FOCS, pp. 51–60. IEEE Computer Society Press, October 2012. https://doi.org/10.1109/FOCS.2012.47

  43. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Wichs, D., Mansour, Y. (eds.) 48th ACM STOC, pp. 1128–1141. ACM Press, June 2016. https://doi.org/10.1145/2897518.2897657

  44. Goyal, V., Richelson, S.: Non-malleable commitments using goldreich-levin list decoding. In: 2019 IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), pp. 686–699. IEEE (2019)

    Google Scholar 

  45. Goyal, V., Richelson, S., Rosen, A., Vald, M.: An algebraic approach to non-malleability. In: 55th FOCS, pp. 41–50. IEEE Computer Society Press, October 2014. https://doi.org/10.1109/FOCS.2014.13

  46. Ishai, Y., Mahmoody, M., Sahai, A.: On efficient zero-knowledge PCPs. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 151–168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_9

    Chapter  Google Scholar 

  47. Ishai, Y., Weiss, M.: Probabilistically checkable proofs of proximity with zero-knowledge. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 121–145. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54242-8_6

    Chapter  MATH  Google Scholar 

  48. Jain, A., Pandey, O.: Non-malleable zero knowledge: black-box constructions and definitional relationships. In: Abdalla, M., De Prisco, R. (eds.) SCN 2014. LNCS, vol. 8642, pp. 435–454. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10879-7_25

    Chapter  MATH  Google Scholar 

  49. Katz, J., Ostrovsky, R., Smith, A.: Round efficiency of multi-party computation with a dishonest majority. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 578–595. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_36

    Chapter  Google Scholar 

  50. Khurana, D.: Round optimal concurrent non-malleability from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 139–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_5

    Chapter  Google Scholar 

  51. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In: Umans, C. (ed.) 58th FOCS, pp. 564–575. IEEE Computer Society Press, October 2017. https://doi.org/10.1109/FOCS.2017.58

  52. Kilian, J.: A note on efficient zero-knowledge proofs and arguments (extended abstract). In: 24th ACM STOC, pp. 723–732. ACM Press, May 1992. https://doi.org/10.1145/129712.129782

  53. Kim, A., Liang, X., Pandey, O.: A new approach to efficient non-malleable zero-knowledge. Cryptology ePrint Archive, Paper 2022/767 (2022). https://eprint.iacr.org/2022/767

  54. Kiyoshima, S.: Round-efficient black-box construction of composable multi-party computation. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014, Part II. LNCS, vol. 8617, pp. 351–368. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44381-1_20

    Chapter  Google Scholar 

  55. Lin, H., Pass, R.: Non-malleability amplification. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 189–198. ACM Press, May/June 2009. https://doi.org/10.1145/1536414.1536442

  56. Lin, H., Pass, R.: Concurrent non-malleable zero knowledge with adaptive inputs. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 274–292. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_17

    Chapter  Google Scholar 

  57. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 705–714. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993730

  58. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-malleable commitments from time-lock puzzles. In: Umans, C. (ed.) 58th FOCS, pp. 576–587. IEEE Computer Society Press, October 2017. https://doi.org/10.1109/FOCS.2017.59

  59. Lin, H., Pass, R., Tseng, W.-L.D., Venkitasubramaniam, M.: Concurrent non-malleable zero knowledge proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 429–446. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_23

    Chapter  Google Scholar 

  60. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_31

    Chapter  Google Scholar 

  61. Micali, S.: CS proofs (extended abstracts). In: 35th FOCS, pp. 436–453. IEEE Computer Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365746

  62. Micali, S., Pass, R., Rosen, A.: Input-indistinguishable computation. In: 47th FOCS, pp. 367–378. IEEE Computer Society Press, October 2006. https://doi.org/10.1109/FOCS.2006.43

  63. Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_9

    Chapter  Google Scholar 

  64. Naor, M.: Bit commitment using pseudo-randomness. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 128–136. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_13

    Chapter  Google Scholar 

  65. Naor, M.: On cryptographic assumptions and challenges. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 96–109. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_6

    Chapter  Google Scholar 

  66. Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: the non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_8

    Chapter  Google Scholar 

  67. O’Neill, A., Peikert, C., Waters, B.: Bi-deniable public-key encryption. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 525–542. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_30

    Chapter  Google Scholar 

  68. Ostrovsky, R., Pandey, O., Visconti, I.: Efficiency preserving transformations for concurrent non-malleable zero knowledge. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 535–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11799-2_32

    Chapter  Google Scholar 

  69. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive One-Way Functions and Applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_4

    Chapter  Google Scholar 

  70. Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_19

    Chapter  Google Scholar 

  71. Pass, R.: Simulation in quasi-polynomial time, and its application to protocol composition. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 160–176. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_10

    Chapter  Google Scholar 

  72. Pass, R.: Concurrent security and non-malleability. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 540–540. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_32

    Chapter  Google Scholar 

  73. Pass, R., Rosen, A.: Concurrent non-malleable commitments. In: 46th FOCS, pp. 563–572. IEEE Computer Society Press, October 2005. https://doi.org/10.1109/SFCS.2005.27

  74. Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols. In: Gabow, H.N., Fagin, R. (eds.) 37th ACM STOC, pp. 533–542. ACM Press, May 2005. https://doi.org/10.1145/1060590.1060670

  75. Pass, R., Wee, H.: Black-box constructions of two-party protocols from one-way functions. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 403–418. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_24

    Chapter  MATH  Google Scholar 

  76. Prabhakaran, M., Sahai, A.: New notions of security: achieving universal composability without trusted setup. In: Babai, L. (ed.) 36th ACM STOC. pp. 242–251. ACM Press, June 2004. https://doi.org/10.1145/1007352.1007394

  77. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: 40th FOCS, pp. 543–553. IEEE Computer Society Press, October 1999. https://doi.org/10.1109/SFFCS.1999.814628

  78. Sahai, A., Waters, B.: How to use indistinguishability obfuscation: deniable encryption, and more. In: Shmoys, D.B. (ed.) 46th ACM STOC, pp. 475–484. ACM Press, May/June 2014. https://doi.org/10.1145/2591796.2591825

  79. Unruh, D.: Random Oracles and auxiliary input. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 205–223. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74143-5_12

    Chapter  Google Scholar 

  80. Wee, H.: Zero knowledge in the random Oracle model, revisited. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 417–434. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_25

    Chapter  Google Scholar 

  81. Wee, H.: Black-box, round-efficient secure computation via non-malleability amplification. In: 51st FOCS, pp. 531–540. IEEE Computer Society Press, October 2010. https://doi.org/10.1109/FOCS.2010.87

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, A., Liang, X., Pandey, O. (2022). A New Approach to Efficient Non-Malleable Zero-Knowledge. In: Dodis, Y., Shrimpton, T. (eds) Advances in Cryptology – CRYPTO 2022. CRYPTO 2022. Lecture Notes in Computer Science, vol 13510. Springer, Cham. https://doi.org/10.1007/978-3-031-15985-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15985-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15984-8

  • Online ISBN: 978-3-031-15985-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics