Nothing Special   »   [go: up one dir, main page]

Skip to main content

Jacobian Ensembles Improve Robustness Trade-Offs to Adversarial Attacks

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Abstract

Deep neural networks have become an integral part of our software infrastructure and are being deployed in many widely-used and safety-critical applications. However, their integration into many systems also brings with it the vulnerability to test time attacks in the form of Universal Adversarial Perturbations (UAPs). UAPs are a class of perturbations that when applied to any input causes model misclassification. Although there is an ongoing effort to defend models against these adversarial attacks, it is often difficult to reconcile the trade-offs in model accuracy and robustness to adversarial attacks. Jacobian regularization has been shown to improve the robustness of models against UAPs, whilst model ensembles have been widely adopted to improve both predictive performance and model robustness. In this work, we propose a novel approach, Jacobian Ensembles – a combination of Jacobian regularization and model ensembles to significantly increase the robustness against UAPs whilst maintaining or improving model accuracy. Our results show that Jacobian Ensembles achieves previously unseen levels of accuracy and robustness, greatly improving over previous methods that tend to skew towards only either accuracy or robustness.

K.T. Co—Supported in part by the DataSpartan research grant DSRD201801.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  2. Brown, T.B., Mané, D.: Adversarial patch. arXiv preprint arXiv:1712.09665 (2017)

  3. Co, K.T., Muñoz González, L., de Maupeou, S., Lupu, E.C.: Procedural noise adversarial examples for black-box attacks on deep convolutional networks. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, pp. 275–289 (2019). https://doi.org/10.1145/3319535.3345660

  4. Co, K.T., Muñoz-González, L., Kanthan, L., Glocker, B., Lupu, E.C.: Universal adversarial robustness of texture and shape-biased models. arXiv preprint arXiv:1911.10364 (2019)

  5. Co, K.T., Muñoz-González, L., Lupu, E.C.: Sensitivity of deep convolutional networks to Gabor noise. arXiv preprint arXiv:1906.03455 (2019)

  6. Co, K.T., Rego, D.M., Lupu, E.C.: Jacobian regularization for mitigating universal adversarial perturbations. In: Farkaš, I., Masulli, P., Otte, S., Wermter, S. (eds.) ICANN 2021. LNCS, vol. 12894, pp. 202–213. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86380-7_17

    Chapter  Google Scholar 

  7. Eykholt, K., et al.: Physical adversarial examples for object detectors. In: 12th USENIX Workshop on Offensive Technologies, \(WOOT\) 2018 (2018)

    Google Scholar 

  8. Eykholt, K., et al.: Robust physical-world attacks on deep learning visual classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1625–1634 (2018)

    Google Scholar 

  9. Freund, Y., Schapire, R., Abe, N.: A short introduction to boosting. J. Japan. Soc. Artif. Intell. 14(771–780), 1612 (1999)

    Google Scholar 

  10. Hau, Z. Co, K.T., Demetriou, S., Lupu, E.C.: Object removal attacks on lidar-based 3d object detectors. arXiv preprint arXiv:2102.03722 (2021)

  11. Hau, Z., Demetriou, S., Muñoz-González, L., Lupu, E.C.: Shadow-catcher: looking into shadows to detect ghost objects in autonomous vehicle 3d sensing. In: Bertino, E., Shulman, H., Waidner, M. (eds.) ESORICS 2021. LNCS, vol. 12972, pp. 691–711. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88418-5_33

    Chapter  Google Scholar 

  12. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Sig. Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  13. Hoffman, J., Roberts, D.A., Yaida, S.: Robust learning with Jacobian regularization. arXiv preprint arXiv:1908.02729 (2019)

  14. Huang, G., Li, Y., Pleiss, G., Liu, Z., Hopcroft, J.E., Weinberger, K.Q.: Snapshot ensembles: train 1, get m for free. In: International Conference on Learning Representations (2017)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1097–1105 (2012)

    Google Scholar 

  16. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley (2014)

    Google Scholar 

  17. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  18. Matachana, A.G., Co, K.T., Muñoz-González, L., Martinez, D., Lupu, E.C.: Robustness and transferability of universal attacks on compressed models. arXiv preprint arXiv:2012.06024 (2020)

  19. Moosavi-Dezfooli, S.M., Fawzi, A., Fawzi, O., Frossard, P.: Universal adversarial perturbations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1765–1773 (2017)

    Google Scholar 

  20. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  21. Roth, K., Kilcher, Y., Hofmann, T.: Adversarial training is a form of data-dependent operator norm regularization. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  22. Shafahi, A., Najibi, M., Xu, Z., Dickerson, J., Davis, L.S., Goldstein, T.: Universal adversarial training. arXiv preprint arXiv:1811.11304 (2018)

  23. Thys, S., Van Ranst, W., Goedemé, T.: Fooling automated surveillance cameras: adversarial patches to attack person detection. In: Workshop on The Bright and Dark Sides of Computer Vision: Challenges and Opportunities for Privacy and Security (CVPRW) (2019)

    Google Scholar 

  24. Tramèr, F., Dupré, P., Rusak, G., Pellegrino, G., Boneh, D.: Adversarial: perceptual ad blocking meets adversarial machine learning. In: Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, CCS 2019, pp. 2005–2021 (2019). https://doi.org/10.1145/3319535.3354222

  25. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  26. Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms. CRC Press (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth T. Co .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Co, K.T., Martinez-Rego, D., Hau, Z., Lupu, E.C. (2022). Jacobian Ensembles Improve Robustness Trade-Offs to Adversarial Attacks. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13531. Springer, Cham. https://doi.org/10.1007/978-3-031-15934-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15934-3_56

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15933-6

  • Online ISBN: 978-3-031-15934-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics