Nothing Special   »   [go: up one dir, main page]

Skip to main content

Lymphoma Ultrasound Image Segmentation with Self-Attention Mechanism and Stable Learning

  • Conference paper
  • First Online:
Artificial Neural Networks and Machine Learning – ICANN 2022 (ICANN 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13529))

Included in the following conference series:

  • 2584 Accesses

Abstract

Segmentation of lymphoma from ultrasound image has become an important task in the diagnosis of lymphoma. There are two problems in the segmentation of lymphoma ultrasound images: (i) the fuzziness of structural boundaries in the image domain and (ii) the generalization of images scanned by different ultrasonic instruments. To solve these two problems, we propose an segmentation framework based on self-attention mechanism and stable learning, in which self-attention mechanism and stable learning are embedded in the baseline network. Self-Attention mechanism (TSA) learns non-local interaction of encoder coding features to alleviate the problem of information decay caused by multiple sampling. The Stable learning (SA) module uses random Fourier features (RFF) and sample weights to eliminate the dependence between features and solve the problem of false correlation features from images scanned by different instruments. In addition, counterfactual interpretation is used to generate instance level interpretation of our complex model. Experiments show that this method can effectively improve the accuracy and reliability of segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, A., Ali, L.: Explainable medical image segmentation via generative adversarial networks and layer-wise relevance propagation. arXiv e-prints (2021)

    Google Scholar 

  2. Amiri, M., Brooks, R., Rivaz, H.: Fine-tuning U-Net for ultrasound image segmentation: different layers, different outcomes. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 67(12), 2510–2518 (2020)

    Article  Google Scholar 

  3. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  4. Contributors, M.: MMSegmentation: openmmlab semantic segmentation toolbox and benchmark (2020). https://github.com/open-mmlab/mmsegmentation

  5. Mishra, D., Chaudhury, S., Sarkar, M., Soin, A.S.: Ultrasound image segmentation: a deeply supervised network with attention to boundaries. IEEE Trans. Biomed. Eng. 66(6), 1637–1648 (2018)

    Article  Google Scholar 

  6. Draelos, R.L., Carin, L.: HiResCAM: faithful location representation in visual attention for explainable 3d medical image classification (2020)

    Google Scholar 

  7. Fu, J., et al.: Dual attention network for scene segmentation (2020)

    Google Scholar 

  8. Gu, R., et al.: CA-Net: comprehensive attention convolutional neural networks for explainable medical image segmentation (2020)

    Google Scholar 

  9. Hong, J.L., Kim, J.U., Lee, S., Kim, H.G., Yong, M.R.: Structure boundary preserving segmentation for medical image with ambiguous boundary (2020)

    Google Scholar 

  10. Hou, Q., Zhang, L., Cheng, M.M., Feng, J.: Strip pooling: rethinking spatial pooling for scene parsing. IEEE (2020)

    Google Scholar 

  11. Huang, L., Yuan, Y., Guo, J., Zhang, C., Chen, X., Wang, J.: Interlaced sparse self-attention for semantic segmentation. IEEE (2019)

    Google Scholar 

  12. Huang, L., Ruan, S., Decazes, P., Denoeux, T.: Lymphoma segmentation from 3D PET-CT images using a deep evidential network. arXiv e-prints arXiv:2201.13078 (2022)

  13. Park, H., Lee, H.J., Kim, H.G., Ro, Y.M.: Endometrium segmentation on transvaginal ultrasound image using key-point discriminator. Med. Phys. 46(9), 3974–3984 (2019)

    Article  Google Scholar 

  14. Li, H., et al.: DenseX-net: an end-to-end model for lymphoma segmentation in whole-body PET/CT images. IEEE Access 8, 8004–8018 (2020). https://doi.org/10.1109/ACCESS.2019.2963254

    Article  Google Scholar 

  15. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2015)

    Google Scholar 

  16. Martens, D., Provost, F.: Explaining documents’ classifications. Social Science Electronic Publishing

    Google Scholar 

  17. Nie, D., Wang, L., Xiang, L., Zhou, S., Shen, D.: Difficulty-aware attention network with confidence learning for medical image segmentation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1085–1092 (2019)

    Google Scholar 

  18. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  19. Sahiner, B., et al.: Deep learning in medical imaging and radiation therapy. Med. Phys. 46(1), e1–e36 (2019)

    Article  MathSciNet  Google Scholar 

  20. Strudel, R., Garcia, R., Laptev, I., Schmid, C.: Segmenter: transformer for semantic segmentation (2021)

    Google Scholar 

  21. Swerdlow, S.H., Cook, J.R.: As the world turns, evolving lymphoma classifications - past, present and future. Hum. Pathol. 95, 55–77 (2019)

    Article  Google Scholar 

  22. Tan, M., Le, Q.V.: Efficientnet: rethinking model scaling for convolutional neural networks (2019)

    Google Scholar 

  23. Vermeire, T., Martens, D.: Explainable image classification with evidence counterfactual (2020)

    Google Scholar 

  24. Wachter, S., Mittelstadt, B., Russell, C.: Counterfactual explanations without opening the black box: automated decisions and the GDPR. Social Science Electronic Publishing (2017)

    Google Scholar 

  25. Wang, Q., Wang, L., Wang, P.: Analysis of survival and prognostic factors in patients with malignant lymphoma after autologous hematopoietic stem cell transplantation. Pract. J. Cancer 35(5), 4 (2020)

    Google Scholar 

  26. Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: Segformer: simple and efficient design for semantic segmentation with transformers (2021)

    Google Scholar 

  27. Yuan, C., et al.: Diffuse large b-cell lymphoma segmentation in PET-CT images via hybrid learning for feature fusion. Med. Phys. 48, 3665–3678 (2021). https://doi.org/10.1002/mp.14847

    Article  Google Scholar 

  28. Zang, X., Bascom, R., Gilbert, C., Toth, J., Higgins, W.: Methods for 2-d and 3-d endobronchial ultrasound image segmentation. IEEE Trans. Biomed. Eng. 63(7), 1426–1439 (2016)

    Article  Google Scholar 

  29. Zeng, Y., Liu, Y.: Prognosis of patients with malignant lymphoma treated by autologous hematopoietic stem cell transplantation. Lab. Med. Clin. 17(9), 4 (2020)

    Google Scholar 

  30. Zhao, H., Liu, D., Zhao, M., Li, Y.: Clinical review of 39 cases of lymphoma diagnosed by percutaneous ultrasound-guided peritoneal mass/lymph node biopsy. Chin. J. Emerg. Med. 28(6), 3 (2019)

    Google Scholar 

  31. Zhao, Y., Rada, L., Chen, K., Harding, S.P., Zheng, Y.: Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images. IEEE Trans. Med. Imaging 34(9), 1797–1807 (2015)

    Article  Google Scholar 

  32. Zheng, S., Lu, J., Zhao, H., Zhu, X., Zhang, L.: Rethinking semantic segmentation from a sequence-to-sequence perspective with transformers (2020)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the National Key R &D Program of China (No. 2019YFE0190500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dehua Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, Y., Chen, D., Luo, Y., Dong, Y. (2022). Lymphoma Ultrasound Image Segmentation with Self-Attention Mechanism and Stable Learning. In: Pimenidis, E., Angelov, P., Jayne, C., Papaleonidas, A., Aydin, M. (eds) Artificial Neural Networks and Machine Learning – ICANN 2022. ICANN 2022. Lecture Notes in Computer Science, vol 13529. Springer, Cham. https://doi.org/10.1007/978-3-031-15919-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15919-0_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15918-3

  • Online ISBN: 978-3-031-15919-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics