Nothing Special   »   [go: up one dir, main page]

Skip to main content

Edge-Cut Width: An Algorithmically Driven Analogue of Treewidth Based on Edge Cuts

  • Conference paper
  • First Online:
Graph-Theoretic Concepts in Computer Science (WG 2022)

Abstract

Decompositional parameters such as treewidth are commonly used to obtain fixed-parameter algorithms for \(\textsf{NP}\)-hard graph problems. For problems that are \({{\textsf{W}}} [1]\)-hard parameterized by treewidth, a natural alternative would be to use a suitable analogue of treewidth that is based on edge cuts instead of vertex separators. While tree-cut width has been coined as such an analogue of treewidth for edge cuts, its algorithmic applications have often led to disappointing results: out of twelve problems where one would hope for fixed-parameter tractability parameterized by an edge-cut based analogue to treewidth, eight were shown to be \({{\textsf{W}}} [1]\)-hard parameterized by tree-cut width.

As our main contribution, we develop an edge-cut based analogue to treewidth called edge-cut width. Edge-cut width is, intuitively, based on measuring the density of cycles passing through a spanning tree of the graph. Its benefits include not only a comparatively simple definition, but mainly that it has interesting algorithmic properties: it can be computed by a fixed-parameter algorithm, and it yields fixed-parameter algorithms for all the aforementioned problems where tree-cut width failed to do so.

Cornelius Brand, Robert Ganian and Viktoriia Korchemna gratefully acknowledge support from the Austria Science Foundation (FWF, Project Y1329).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We view a parameter as decompositional if it is tied to a well-defined graph decomposition; all decompositional parameters are closed under the disjoint union operation of graphs.

  2. 2.

    We remark that besides establishing \({{\textsf{W}}} [1]\)-hardness for this problem, the authors also showed that the problem becomes \(\textsf{FPT}\) w.r.t. tree-cut width under additional restrictions.

  3. 3.

    The authors originally used the name “local feedback edge number”.

  4. 4.

    Note that by the syntax, it follows that \(e_i\) and \(e_j\) are both contained in \(\partial (v)\).

References

  1. Bentert, M., Haag, R., Hofer, C., Koana, T., Nichterlein, A.: Parameterized complexity of min-power asymmetric connectivity. Theory Comput. Syst. 64(7), 1158–1182 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Drange, P.G., Dregi, M.S., Fomin, F.V., Lokshtanov, D., Pilipczuk, M.: A c\({}^{\text{k}}\) n 5-approximation algorithm for treewidth. SIAM J. Comput. 45(2), 317–378 (2016)

    Google Scholar 

  3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for treewidth: a combinatorial analysis through kernelization. SIAM J. Discret. Math. 27(4), 2108–2142 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bonnet, É., Kim, E.J., Thomassé, S., Watrigant, R.: Twin-width I: tractable FO model checking. In: 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, 16–19 November 2020, pp. 601–612. IEEE (2020)

    Google Scholar 

  5. Bredereck, R., Heeger, K., Knop, D., Niedermeier, R.: Parameterized complexity of stable roommates with ties and incomplete lists through the lens of graph parameters. In: Lu, P., Zhang, G. (eds.) 30th International Symposium on Algorithms and Computation, ISAAC 2019, 8–11 December 2019, Shanghai University of Finance and Economics, Shanghai, China. LIPIcs, vol. 149, pp. 44:1–44:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  6. Cygan, M., et al.: Lower bounds for kernelization. In: Parameterized Algorithms, pp. 523–555. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21275-3_15

    Chapter  Google Scholar 

  7. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Heidelberg (2012)

    MATH  Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in Computer Science, Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4471-5559-1

    Book  MATH  Google Scholar 

  9. Fellows, M.R., et al.: On the complexity of some colorful problems parameterized by treewidth. Inf. Comput. 209(2), 143–153 (2011)

    Article  MathSciNet  Google Scholar 

  10. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F.A., Saurabh, S.: Graph layout problems parameterized by vertex cover. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 294–305. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92182-0_28

    Chapter  Google Scholar 

  11. Fleszar, K., Mnich, M., Spoerhase, J.: New algorithms for maximum disjoint paths based on tree-likeness. Math. Program. 171, 433–461 (2017). https://doi.org/10.1007/s10107-017-1199-3

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganian, R.: Improving vertex cover as a graph parameter. Discret. Math. Theor. Comput. Sci. 17(2), 77–100 (2015). http://dmtcs.episciences.org/2136

  13. Ganian, R., Hlinený, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discret. Appl. Math. 158(7), 851–867 (2010)

    Article  MathSciNet  Google Scholar 

  14. Ganian, R., Kim, E.J., Szeider, S.: Algorithmic applications of tree-cut width. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9235, pp. 348–360. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48054-0_29

    Chapter  MATH  Google Scholar 

  15. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the bounded-degree vertex deletion problem. Algorithmica 83(1), 297–336 (2021)

    Article  MathSciNet  Google Scholar 

  16. Ganian, R., Korchemna, V.: The complexity of Bayesian network learning: Revisiting the superstructure. In: Proceedings of NeurIPS 2021, The Thirty-Fifth Conference on Neural Information Processing Systems (2021, to appear)

    Google Scholar 

  17. Ganian, R., Ordyniak, S.: The complexity landscape of decompositional parameters for ILP. Artif. Intell. 257, 61–71 (2018)

    Article  MathSciNet  Google Scholar 

  18. Ganian, R., Ordyniak, S.: The power of cut-based parameters for computing edge-disjoint paths. Algorithmica 83(2), 726–752 (2021)

    Article  MathSciNet  Google Scholar 

  19. Ganian, R., Ordyniak, S., Ramanujan, M.S.: On structural parameterizations of the edge disjoint paths problem. Algorithmica 83(6), 1605–1637 (2021)

    Article  MathSciNet  Google Scholar 

  20. Giannopoulou, A.C., Kwon, O., Raymond, J., Thilikos, D.M.: Lean tree-cut decompositions: obstructions and algorithms. In: Niedermeier, R., Paul, C. (eds.) 36th International Symposium on Theoretical Aspects of Computer Science, STACS 2019, Berlin, Germany, 13–16 March 2019. LIPIcs, vol. 126, pp. 32:1–32:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

    Google Scholar 

  21. Golovach, P.A., Komusiewicz, C., Kratsch, D., Le, V.B.: Refined notions of parameterized enumeration kernels with applications to matching cut enumeration. J. Comput. Syst. Sci. 123, 76–102 (2022)

    Article  MathSciNet  Google Scholar 

  22. Gözüpek, D., Özkan, S., Paul, C., Sau, I., Shalom, M.: Parameterized complexity of the MINCCA problem on graphs of bounded decomposability. Theor. Comput. Sci. 690, 91–103 (2017)

    Article  MathSciNet  Google Scholar 

  23. Gutin, G.Z., Jones, M., Wahlström, M.: The mixed Chinese postman problem parameterized by pathwidth and treedepth. SIAM J. Discret. Math. 30(4), 2177–2205 (2016)

    Article  MathSciNet  Google Scholar 

  24. Kim, E.J., Oum, S., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation for tree-cut decomposition. Algorithmica 80(1), 116–135 (2018)

    Article  MathSciNet  Google Scholar 

  25. Korhonen, T.: Single-exponential time 2-approximation algorithm for treewidth. CoRR abs/2104.07463 (2021). https://arxiv.org/abs/2104.07463

  26. Magne, L., Paul, C., Sharma, A., Thilikos, D.M.: Edge-treewidth: algorithmic and combinatorial properties. CoRR abs/2112.07524 (2021)

    Google Scholar 

  27. Marx, D., Wollan, P.: Immersions in highly edge connected graphs. SIAM J. Discret. Math. 28(1), 503–520 (2014)

    Article  MathSciNet  Google Scholar 

  28. Nederlof, J., Pilipczuk, M., Swennenhuis, C.M.F., Węgrzycki, K.: Hamiltonian cycle parameterized by treedepth in single exponential time and polynomial space. In: Adler, I., Müller, H. (eds.) WG 2020. LNCS, vol. 12301, pp. 27–39. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60440-0_3

    Chapter  Google Scholar 

  29. Nešetřil, J., Ossona de Mendez, P.: Sparsity. Algorithms and Combinatorics, vol. 28. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27875-4

    Book  MATH  Google Scholar 

  30. Oum, S.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5(1), 1–20 (2008)

    Article  MathSciNet  Google Scholar 

  31. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MathSciNet  Google Scholar 

  32. Samer, M., Szeider, S.: Constraint satisfaction with bounded treewidth revisited. J. Comput. Syst. Sci. 76(2), 103–114 (2010)

    Article  MathSciNet  Google Scholar 

  33. Scheffler, P.: Practical linear time algorithm for disjoint paths in graphs with bounded tree-width. Technical report TR 396/1994. FU Berlin, Fachbereich 3 Mathematik (1994)

    Google Scholar 

  34. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theory Ser. B 110, 47–66 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Ganian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brand, C., Ceylan, E., Ganian, R., Hatschka, C., Korchemna, V. (2022). Edge-Cut Width: An Algorithmically Driven Analogue of Treewidth Based on Edge Cuts. In: Bekos, M.A., Kaufmann, M. (eds) Graph-Theoretic Concepts in Computer Science. WG 2022. Lecture Notes in Computer Science, vol 13453. Springer, Cham. https://doi.org/10.1007/978-3-031-15914-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15914-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15913-8

  • Online ISBN: 978-3-031-15914-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics