Abstract
Database sanitization allows to share and publish open (linked) data without jeopardizing privacy. During their sanitization, graph databases are transformed following graph transformations that are usually described informally or through ad-hoc processes.
This paper is a first effort toward bridging the gap between the rigorous graph rewriting approaches and graph sanitization by providing basic generic graph rewriting operators to serve as a basis for the construction of sanitization mechanisms. As a proof of concept, we formalize two operators, blank node creation and weighted relation randomization, using an algebraic graph rewriting approach that takes into account semantic through the equivalent of Where and Except clauses. We show that these operators can be used to achieve pseudonymity and local differential privacy. Both operators and all related rewriting rules are implemented using the Attributed Graph Grammar System (AGG), providing a concrete tool implementing formal graph rewriting mechanisms to sanitize semantic graph databases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chabin, J., Eichler, C., Ferrari, M.H., Hiot, N.: Graph rewriting rules for RDF database evolution: optimizing side-effect processing. Int. J. Web Inf. Syst. 17(6), 622–644 (2021)
Chabin, J., Eichler, C., Halfeld-Ferrari, M., Hiot, N.: Graph rewriting rules for RDF database evolution management. In: Proceedings of the 22nd International Conference on Information Integration and Web-Based Applications & Services, pp. 134–143. ACM (2020)
Chabin, J., Halfeld-Ferrari, M., Laurent, D.: Consistent updating of databases with marked nulls. Knowl. Inf. Syst. 62(4), 1571–1609 (2019). https://doi.org/10.1007/s10115-019-01402-w
De Leenheer, P., Mens, T.: Using graph transformation to support collaborative ontology evolution. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 44–58. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89020-1_4
Delanaux, R., Bonifati, A., Rousset, M.-C., Thion, R.: Query-based linked data anonymization. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 530–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_31
Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 429–438. IEEE Computer Society (2013)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1
Flouris, G., Konstantinidis, G., Antoniou, G., Christophides, V.: Formal foundations for RDF/S KB evolution. Knowl. Inf. Syst. 35(1), 153–191 (2013)
Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inf. 26(3,4), 287–313 (1996)
Heitmann, B., Hermsen, F., Decker, S.: k-RDF-neighbourhood anonymity: combining structural and attribute-based anonymisation for linked data. PrivOn@ ISWC 1951 (2017)
Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. J. Mach. Learn. Res. 17(17) (2016). http://jmlr.org/papers/v17/15-135.html
Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.D.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)
Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret. Comput. Sci. 109(1–2), 181–224 (1993)
Mahfoudh, M., Forestier, G., Thiry, L., Hassenforder, M.: Algebraic graph transformations for formalizing ontology changes and evolving ontologies. Knowl.-Based Syst. 73, 212–226 (2015)
Radulovic, F., García-Castro, R., Gómez-Pérez, A.: Towards the anonymisation of RDF data. In: SEKE, pp. 646–651 (2015)
Schwentick, T.: Automata for XML - a survey. J. Comput. Syst. Sci. 73(3), 289–315 (2007)
Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated merging of feature models using graph transformations. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 489–505. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3_15
Shaban-Nejad, A., Haarslev, V.: Managing changes in distributed biomedical ontologies using hierarchical distributed graph transformation. Int. J. Data Min. Bioinform. 11(1), 53–83 (2015)
Sweeney, L.: k-anonymity: a model for protecting privacy. Internat. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)
Taentzer, G.: AGG: a graph transformation environment for modeling and validation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25959-6_35
Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and social networks, pp. 421–453. Springer, Cham (2010). https://doi.org/10.1007/978-1-4419-6045-0_14
Zheleva, E., Getoor, L.: Privacy in social networks: a survey. In: Social Network Data Analytics, pp. 277–306. Springer, Cham (2011). https://doi.org/10.1007/978-1-4419-8462-3_10
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Boiret, A., Eichler, C., Nguyen, B. (2022). Privacy Operators for Semantic Graph Databases as Graph Rewriting. In: Chiusano, S., et al. New Trends in Database and Information Systems. ADBIS 2022. Communications in Computer and Information Science, vol 1652. Springer, Cham. https://doi.org/10.1007/978-3-031-15743-1_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-15743-1_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-15742-4
Online ISBN: 978-3-031-15743-1
eBook Packages: Computer ScienceComputer Science (R0)