Nothing Special   »   [go: up one dir, main page]

Skip to main content

Privacy Operators for Semantic Graph Databases as Graph Rewriting

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1652))

Included in the following conference series:

Abstract

Database sanitization allows to share and publish open (linked) data without jeopardizing privacy. During their sanitization, graph databases are transformed following graph transformations that are usually described informally or through ad-hoc processes.

This paper is a first effort toward bridging the gap between the rigorous graph rewriting approaches and graph sanitization by providing basic generic graph rewriting operators to serve as a basis for the construction of sanitization mechanisms. As a proof of concept, we formalize two operators, blank node creation and weighted relation randomization, using an algebraic graph rewriting approach that takes into account semantic through the equivalent of Where and Except clauses. We show that these operators can be used to achieve pseudonymity and local differential privacy. Both operators and all related rewriting rules are implemented using the Attributed Graph Grammar System (AGG), providing a concrete tool implementing formal graph rewriting mechanisms to sanitize semantic graph databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    univ-orleans.fr/lifo/evenements/sendup-project/index.php/privacy-operators/.

References

  1. Chabin, J., Eichler, C., Ferrari, M.H., Hiot, N.: Graph rewriting rules for RDF database evolution: optimizing side-effect processing. Int. J. Web Inf. Syst. 17(6), 622–644 (2021)

    Article  Google Scholar 

  2. Chabin, J., Eichler, C., Halfeld-Ferrari, M., Hiot, N.: Graph rewriting rules for RDF database evolution management. In: Proceedings of the 22nd International Conference on Information Integration and Web-Based Applications & Services, pp. 134–143. ACM (2020)

    Google Scholar 

  3. Chabin, J., Halfeld-Ferrari, M., Laurent, D.: Consistent updating of databases with marked nulls. Knowl. Inf. Syst. 62(4), 1571–1609 (2019). https://doi.org/10.1007/s10115-019-01402-w

    Article  Google Scholar 

  4. De Leenheer, P., Mens, T.: Using graph transformation to support collaborative ontology evolution. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088, pp. 44–58. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89020-1_4

    Chapter  Google Scholar 

  5. Delanaux, R., Bonifati, A., Rousset, M.-C., Thion, R.: Query-based linked data anonymization. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 530–546. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_31

    Chapter  Google Scholar 

  6. Duchi, J.C., Jordan, M.I., Wainwright, M.J.: Local privacy and statistical minimax rates. In: 54th Annual IEEE Symposium on Foundations of Computer Science, pp. 429–438. IEEE Computer Society (2013)

    Google Scholar 

  7. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006_1

    Chapter  Google Scholar 

  8. Flouris, G., Konstantinidis, G., Antoniou, G., Christophides, V.: Formal foundations for RDF/S KB evolution. Knowl. Inf. Syst. 35(1), 153–191 (2013)

    Article  Google Scholar 

  9. Habel, A., Heckel, R., Taentzer, G.: Graph grammars with negative application conditions. Fundam. Inf. 26(3,4), 287–313 (1996)

    Google Scholar 

  10. Heitmann, B., Hermsen, F., Decker, S.: k-RDF-neighbourhood anonymity: combining structural and attribute-based anonymisation for linked data. PrivOn@ ISWC 1951 (2017)

    Google Scholar 

  11. Kairouz, P., Oh, S., Viswanath, P.: Extremal mechanisms for local differential privacy. J. Mach. Learn. Res. 17(17) (2016). http://jmlr.org/papers/v17/15-135.html

  12. Kasiviswanathan, S.P., Lee, H.K., Nissim, K., Raskhodnikova, S., Smith, A.D.: What can we learn privately? SIAM J. Comput. 40(3), 793–826 (2011)

    Article  MathSciNet  Google Scholar 

  13. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoret. Comput. Sci. 109(1–2), 181–224 (1993)

    Article  MathSciNet  Google Scholar 

  14. Mahfoudh, M., Forestier, G., Thiry, L., Hassenforder, M.: Algebraic graph transformations for formalizing ontology changes and evolving ontologies. Knowl.-Based Syst. 73, 212–226 (2015)

    Article  Google Scholar 

  15. Radulovic, F., García-Castro, R., Gómez-Pérez, A.: Towards the anonymisation of RDF data. In: SEKE, pp. 646–651 (2015)

    Google Scholar 

  16. Schwentick, T.: Automata for XML - a survey. J. Comput. Syst. Sci. 73(3), 289–315 (2007)

    Article  MathSciNet  Google Scholar 

  17. Segura, S., Benavides, D., Ruiz-Cortés, A., Trinidad, P.: Automated merging of feature models using graph transformations. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol. 5235, pp. 489–505. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88643-3_15

    Chapter  Google Scholar 

  18. Shaban-Nejad, A., Haarslev, V.: Managing changes in distributed biomedical ontologies using hierarchical distributed graph transformation. Int. J. Data Min. Bioinform. 11(1), 53–83 (2015)

    Article  Google Scholar 

  19. Sweeney, L.: k-anonymity: a model for protecting privacy. Internat. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)

    Article  MathSciNet  Google Scholar 

  20. Taentzer, G.: AGG: a graph transformation environment for modeling and validation of software. In: Pfaltz, J.L., Nagl, M., Böhlen, B. (eds.) AGTIVE 2003. LNCS, vol. 3062, pp. 446–453. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25959-6_35

    Chapter  Google Scholar 

  21. Wu, X., Ying, X., Liu, K., Chen, L.: A survey of privacy-preservation of graphs and social networks, pp. 421–453. Springer, Cham (2010). https://doi.org/10.1007/978-1-4419-6045-0_14

  22. Zheleva, E., Getoor, L.: Privacy in social networks: a survey. In: Social Network Data Analytics, pp. 277–306. Springer, Cham (2011). https://doi.org/10.1007/978-1-4419-8462-3_10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Boiret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boiret, A., Eichler, C., Nguyen, B. (2022). Privacy Operators for Semantic Graph Databases as Graph Rewriting. In: Chiusano, S., et al. New Trends in Database and Information Systems. ADBIS 2022. Communications in Computer and Information Science, vol 1652. Springer, Cham. https://doi.org/10.1007/978-3-031-15743-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15743-1_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15742-4

  • Online ISBN: 978-3-031-15743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics