Nothing Special   »   [go: up one dir, main page]

Skip to main content

Convex Multi-Task Learning with Neural Networks

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13469))

Included in the following conference series:

Abstract

Multi-Task Learning aims at improving the learning process by solving different tasks simultaneously. The approaches to Multi-Task Learning can be categorized as feature-learning, regularization-based and combination strategies. Feature-learning approximations are more natural for deep models while regularization-based ones are usually designed for shallow ones, but we can see examples of both for shallow and deep models. However, the combination approach has been tested on shallow models exclusively. Here we propose a Multi-Task combination approach for Neural Networks, describe the training procedure, test it in four different multi-task image datasets and show improvements in the performance over other strategies.

The authors acknowledge financial support from the European Regional Development Fund and the Spanish State Research Agency of the Ministry of Economy, Industry, and Competitiveness under the project PID2019-106827GB-I00. They also thank the UAM–ADIC Chair for Data Science and Machine Learning and gratefully acknowledge the use of the facilities of Centro de Computación Científica (CCC) at UAM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    www.pytorch.org/tutorials/intermediate/spatial_transformer_tutorial.html.

References

  1. Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. J. Mach. Learn. Res. 6, 1817–1853 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198 (2000)

    Article  MathSciNet  Google Scholar 

  3. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, 281–305 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Cai, F., Cherkassky, V.: SVM+ regression and multi-task learning. In: International Joint Conference on Neural Networks, IJCNN 2009, pp. 418–424. IEEE Computer Society (2009)

    Google Scholar 

  5. Caruana, R.: Multitask learning. Mach. Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  6. Chen, J., Tang, L., Liu, J., Ye, J.: A convex formulation for learning shared structures from multiple tasks. In: ACM International Conference Proceeding Series, ICML 2009, vol. 382, pp. 137–144 (2009)

    Google Scholar 

  7. Evgeniou, T., Micchelli, C.A., Pontil, M.: Learning multiple tasks with kernel methods. J. Mach. Learn. Res. 6, 615–637 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 109–117. ACM (2004)

    Google Scholar 

  9. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: IEEE International Conference on Computer Vision, ICCV, pp. 2551–2559. IEEE Computer Society (2015)

    Google Scholar 

  10. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks (2015). https://doi.org/10.48550/ARXIV.1506.02025. https://arxiv.org/abs/1506.02025

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Maurer, A., Pontil, M., Romera-Paredes, B.: Sparse coding for multitask and transfer learning. In: Proceedings of the 30th International Conference on Machine Learning, ICML 2013, vol. 28, pp. 343–351. JMLR.org (2013)

    Google Scholar 

  13. Misra, I., Shrivastava, A., Gupta, A., Hebert, M.: Cross-stitch networks for multi-task learning. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, pp. 3994–4003. IEEE Computer Society (2016)

    Google Scholar 

  14. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems 32, pp. 8024–8035 (2019)

    Google Scholar 

  15. Ruder, S.: An overview of multi-task learning in deep neural networks. CoRR abs/1706.05098 (2017)

    Google Scholar 

  16. Ruiz, C., Alaíz, C.M., Dorronsoro, J.R.: A convex formulation of SVM-based multi-task learning. In: Pérez García, H., Sánchez González, L., Castejón Limas, M., Quintián Pardo, H., Corchado Rodríguez, E. (eds.) HAIS 2019. LNCS (LNAI), vol. 11734, pp. 404–415. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29859-3_35

    Chapter  Google Scholar 

  17. Ruiz, C., Alaíz, C.M., Dorronsoro, J.R.: Convex graph Laplacian multi-task learning SVM. In: Farkaš, I., Masulli, P., Wermter, S. (eds.) ICANN 2020. LNCS, vol. 12397, pp. 142–154. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61616-8_12

    Chapter  Google Scholar 

  18. Ruiz, C., Alaíz, C.M., Dorronsoro, J.R.: Convex formulation for multi-task L1-, L2-, and LS-SVMs. Neurocomputing 456, 599–608 (2021)

    Article  Google Scholar 

  19. Vapnik, V.: Estimation of Dependences Based on Empirical Data. Springer, New York (1982)

    MATH  Google Scholar 

  20. Vapnik, V., Izmailov, R.: Learning using privileged information: similarity control and knowledge transfer. J. Mach. Learn. Res. 16, 2023–2049 (2015)

    MathSciNet  MATH  Google Scholar 

  21. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  22. Xu, S., An, X., Qiao, X., Zhu, L.: Multi-task least-squares support vector machines. Multimedia Tools Appl. 71(2), 699–715 (2013). https://doi.org/10.1007/s11042-013-1526-5

    Article  Google Scholar 

  23. Yang, Y., Hospedales, T.M.: Trace norm regularised deep multi-task learning. In: 5th International Conference on Learning Representations, ICLR 2017. OpenReview.net (2017)

    Google Scholar 

  24. Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruiz, C., Alaíz, C.M., Dorronsoro, J.R. (2022). Convex Multi-Task Learning with Neural Networks. In: García Bringas, P., et al. Hybrid Artificial Intelligent Systems. HAIS 2022. Lecture Notes in Computer Science(), vol 13469. Springer, Cham. https://doi.org/10.1007/978-3-031-15471-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-15471-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-15470-6

  • Online ISBN: 978-3-031-15471-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics