Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adapting Semantic Similarity Methods for Case-Based Reasoning in the Cloud

  • Conference paper
  • First Online:
Case-Based Reasoning Research and Development (ICCBR 2022)

Abstract

Clood is a cloud-based CBR framework based on a microservices architecture which facilitates the design and deployment of case-based reasoning applications of various sizes. This paper presents advances to the similarity module of Clood through the inclusion of enhanced similarity metrics such as word embedding and ontology-based similarity measures. Being cloud-based, costs can significantly increase if the use of resources such as storage and data transfer are not optimised. Accordingly, we discuss and compare alternative design decisions and provide justification for each chosen approach for Clood.

This research is funded by the iSee project (https://isee4xai.com) which received funding from EPSRC under the grant number EP/V061755/1. iSee is part of the CHIST-ERA pathfinder programme for European coordinated research on future and emerging information and communication technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://isee4xai.com/.

  2. 2.

    https://github.com/isee4xai/iSeeOnto.

  3. 3.

    https://opensearch.org/.

  4. 4.

    https://github.com/RGU-Computing/clood.

  5. 5.

    https://npmjs.com/package/@tensorflow-models/universal-sentence-encoder.

  6. 6.

    https://www.kaggle.com/datasets/knightbearr/pizza-price-prediction.

  7. 7.

    https://protege.stanford.edu/ontologies/pizza/pizza.owl.

References

  1. Amailef, K., Lu, J.: Ontology-supported case-based reasoning approach for intelligent m-government emergency response services. Decis. Support Syst. 55(1), 79–97 (2013)

    Article  Google Scholar 

  2. Amin, K., Lancaster, G., Kapetanakis, S., Althoff, K.-D., Dengel, A., Petridis, M.: Advanced similarity measures using word embeddings and siamese networks in CBR. In: Bi, Y., Bhatia, R., Kapoor, S. (eds.) IntelliSys 2019. AISC, vol. 1038, pp. 449–462. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29513-4_32

    Chapter  Google Scholar 

  3. Cer, D., et al.: Universal sentence encoder. arXiv preprint arXiv:1803.11175 (2018)

  4. Díaz-Agudo, B., González-Calero, P.A., Recio-García, J.A., Sánchez-Ruiz-Granados, A.A.: Building CBR systems with jcolibri. Sci. Comput. Program. 69(1–3), 68–75 (2007)

    Article  MathSciNet  Google Scholar 

  5. Ghofrani, J., Lübke, D.: Challenges of microservices architecture: a survey on the state of the practice. ZEUS 2018, 1–8 (2018)

    Google Scholar 

  6. González-Calero, P.A., Díaz-Agudo, B., Gómez-Albarrán, M., et al.: Applying DLS for retrieval in case-based reasoning. In: Proceedings of the 1999 Description Logics Workshop (Dl 1999). Linkopings universitet. Citeseer (1999)

    Google Scholar 

  7. Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G., Milios, E.: Information retrieval by semantic similarity. Int. J. Semant. Web Inf. Syst. (IJSWIS) 2(3), 55–73 (2006)

    Article  Google Scholar 

  8. Khattak, F.K., Jeblee, S., Pou-Prom, C., Abdalla, M., Meaney, C., Rudzicz, F.: A survey of word embeddings for clinical text. J. Biomed. Inform. 100, 100057 (2019)

    Article  Google Scholar 

  9. Lastra-Díaz, J.J., Goikoetxea, J., Taieb, M.A.H., García-Serrano, A., Aouicha, M.B., Agirre, E.: A reproducible survey on word embeddings and ontology-based methods for word similarity: linear combinations outperform the state of the art. Eng. Appl. Artif. Intell. 85, 645–665 (2019)

    Article  Google Scholar 

  10. Lin, D., et al.: An information-theoretic definition of similarity. In: ICML, vol. 98, pp. 296–304 (1998)

    Google Scholar 

  11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems 26 (2013)

    Google Scholar 

  12. Montero-Jiménez, J.J., Vingerhoeds, R., Grabot, B.: Enhancing predictive maintenance architecture process by using ontology-enabled case-based reasoning. In: 2021 IEEE International Symposium on Systems Engineering (ISSE), pp. 1–8. IEEE (2021)

    Google Scholar 

  13. Nkisi-Orji, I., Wiratunga, N., Palihawadana, C., Recio-García, J.A., Corsar, D.: Clood CBR: towards microservices oriented case-based reasoning. In: Watson, I., Weber, R. (eds.) ICCBR 2020. LNCS (LNAI), vol. 12311, pp. 129–143. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58342-2_9

    Chapter  Google Scholar 

  14. Qin, Y., et al.: Towards an ontology-supported case-based reasoning approach for computer-aided tolerance specification. Knowl.-Based Syst. 141, 129–147 (2018)

    Article  Google Scholar 

  15. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Trans. Syst. Man Cybern. 19(1), 17–30 (1989)

    Article  Google Scholar 

  16. Recio-Garía, J.A., Díaz-Agudo, B.: Ontology based CBR with jCOLIBRI. In: Ellis, R., Allen, T., Tuson, A. (eds.) SGAI 2006, pp. 149–162. Springer, London (2006). https://doi.org/10.1007/978-1-84628-666-7_12

    Chapter  Google Scholar 

  17. Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. arXiv preprint cmp-lg/9511007 (1995)

    Google Scholar 

  18. Sánchez, D., Batet, M., Isern, D., Valls, A.: Ontology-based semantic similarity: a new feature-based approach. Expert Syst. Appl. 39(9), 7718–7728 (2012)

    Article  Google Scholar 

  19. Schleier-Smith, J., et al.: What serverless computing is and should become: the next phase of cloud computing. Commun. ACM 64(5), 76–84 (2021)

    Article  Google Scholar 

  20. Taibi, D., El Ioini, N., Pahl, C., Niederkofler, J.R.S.: Patterns for serverless functions (function-as-a-service): a multivocal literature review (2020)

    Google Scholar 

  21. Wu, Z., Palmer, M.: Verb semantics and lexical selection. arXiv preprint cmp-lg/9406033 (1994)

    Google Scholar 

  22. Xie, R., Tang, Q., Qiao, S., Zhu, H., Yu, F.R., Huang, T.: When serverless computing meets edge computing: architecture, challenges, and open issues. IEEE Wirel. Commun. 28(5), 126–133 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ikechukwu Nkisi-Orji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nkisi-Orji, I., Palihawadana, C., Wiratunga, N., Corsar, D., Wijekoon, A. (2022). Adapting Semantic Similarity Methods for Case-Based Reasoning in the Cloud. In: Keane, M.T., Wiratunga, N. (eds) Case-Based Reasoning Research and Development. ICCBR 2022. Lecture Notes in Computer Science(), vol 13405. Springer, Cham. https://doi.org/10.1007/978-3-031-14923-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14923-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14922-1

  • Online ISBN: 978-3-031-14923-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics