Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi Recursive Residual Dense Attention GAN for Perceptual Image Super Resolution

  • Conference paper
  • First Online:
Intelligence Science IV (ICIS 2022)

Part of the book series: IFIP Advances in Information and Communication Technology ((IFIPAICT,volume 659))

Included in the following conference series:

  • 1091 Accesses

Abstract

Single image super-resolution (SISR) has achieved great progress based on convolutional neural networks (CNNs) such as generative adversarial network (GAN). However, most deep learning architectures cannot utilize the hierarchical features in original low-resolution images, which may result in the loss of image details. To recover visually high-quality high-resolution images, we propose a novel Multi-recursive residual dense Attention Generative Adversarial Network (MAGAN). Our MAGAN enjoys the ability to learn more texture details and overcome the weakness of conventional GAN-based models, which easily generate redundant information. In particular, we design a new multi-recursive residual dense network as a module in our generator to take advantage of the information from hierarchical features. We also introduce a multi-attention mechanism to our MAGAN to capture more informative features. Moreover, we present a new convolutional block in our discriminator by utilizing switchable normalization and spectral normalization to stabilize the training and accelerate convergence. Experimental results on benchmark datasets indicate that MAGAN yields finer texture details and does not produce redundant information in comparison with existing methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yang, W., Zhang, X., Tian, Y., Wang, W., Xue, J., Liao, Q.: Deep learning for single image super-resolution: a brief review. IEEE Trans. Multimedia 21(12), 3106–3121 (2019)

    Article  Google Scholar 

  2. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Process. 21(11), 4544–4556 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zhang, L., Wu, X.: An edge-guided image interpolation algorithm via directional filtering and data fusion. IEEE Trans. Image Process. 15(8), 2226–2238 (2006)

    Article  Google Scholar 

  4. Hsu, J., Kuo, C., Chen, D.: Image super-resolution using capsule neural networks. IEEE Access 8, 9751–9759 (2020)

    Article  Google Scholar 

  5. Shi, Y., Li, S., Li, W., Liu, A.: Fast and lightweight image super-resolution based on dense residuals two-channel network. In. IEEE International Conference on Image Processing (ICIP) 2019, pp. 2826–2830 (2019)

    Google Scholar 

  6. Haris, M., Shakhnarovich, G., Ukita, N.: Deep back-projection networks for super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1664–1673 (2018)

    Google Scholar 

  7. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  8. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 1132–1140 (2017)

    Google Scholar 

  9. Shi, W., et al.: Is the deconvolution layer the same as a convolutional layer? arXiv:1609.07009 (2016)

  10. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2018)

    Google Scholar 

  11. Hu, Y., Gao, X., Li, J., Huang, Y., Wang, H.: Single image super-resolution with multi-scale information cross-fusion network. Signal Process. 179, 107831 (2021)

    Article  Google Scholar 

  12. Chang, K., Li, M., Ding, P.L.K., Li, B.: Accurate single image super-resolution using multi-path wide-activated residual network. Signal Process. 172, 107567 (2020)

    Article  Google Scholar 

  13. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114 (2017)

    Google Scholar 

  14. Sajjadi, M.S.M., Scholkopf, B., Hirsch, M.: EnhanceNet: single image super-resolution through automated texture synthesis. In: The IEEE International Conference on Computer Vision (ICCV), pp. 4501–4510 (2017)

    Google Scholar 

  15. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63–79. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

    Chapter  Google Scholar 

  16. Soh, J.W., Park, G.Y., Jo, J., Cho, N.I.: Natural and realistic single image super-resolution with explicit natural manifold discrimination. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  17. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates Inc. (2014)

    Google Scholar 

  18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  19. Wang, X., Yu, K., Dong, C., Change Loy, C.: Recovering realistic texture in image super-resolution by deep spatial feature transform. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 606–615 (2018)

    Google Scholar 

  20. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. In: International Conference on Learning Representations (2019)

    Google Scholar 

  21. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 800–815. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_47

    Chapter  Google Scholar 

  22. Mechrez, R., Talmi, I., Shama, F., Zelnik-Manor, L.: Learning to maintain natural image statistics. arXiv: 1803.04626 (2018)

  23. Wang, Z., Chen, J., Hoi, S.C.H.: Deep learning for image super-resolution: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43, 3365–3387 (2020)

    Article  Google Scholar 

  24. Bachlechner, T., Majumder, B.P., Mao, H.H., Cottrell, G.W., McAuley, J.: ReZero is all you need: Fast convergence at large depth. arXiv:2003.04887 (2020)

  25. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  26. Luo, P., Ren, J., Peng, Z., Zhang, R., Li, J.: Differentiable learning-to-normalize via switchable normalization. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  27. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  28. Odena, A., et al.: Is generator conditioning causally related to GAN performance? In: Proceedings of the 35th International Conference on Machine Learning (ICML), pp. 3849–3858 (2018)

    Google Scholar 

  29. Blau, Y., Mechrez, R., Timofte, R., Michaeli, T., Zelnik-Manor, L.: The 2018 PIRM challenge on perceptual image super-resolution. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 334–355. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_21

    Chapter  Google Scholar 

  30. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the 30th International Conference on Machine Learning (ICML) (2013)

    Google Scholar 

  31. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) 2017, pp. 1122–1131 (2017)

    Google Scholar 

  32. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: International Conference on Curves and Surfaces, pp. 711–730 (2012)

    Google Scholar 

  33. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001, pp. 416–423 (2001)

    Google Scholar 

  34. Huang, J., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2015, pp. 5197–5206 (2015)

    Google Scholar 

  35. Rad, M.S., Bozorgtabar, B., Marti, U.-V., Basler, M., Ekenel, H.K., Thiran, J.-P.: SROBB: targeted perceptual loss for single image super-resolution. In: The IEEE International Conference on Computer Vision (ICCV), 2019, pp. 2710–2719 (2019)

    Google Scholar 

  36. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable ConvNets V2: more deformable, better results. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9300–9308 (2019)

    Google Scholar 

  37. Liu, H., Zhao, P., Ruan, Z., Shang, F., Liu, Y.: Large motion video super-resolution with dual subnet and multi-stage communicated upsampling. In: Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI) (2021)

    Google Scholar 

  38. Liu, H., et al.: A single frame and multi-frame joint network for 360-degree panorama video super-resolution. arXiv Preprint arXiv:2008.10320 (2020)

  39. Liu, H., Ruan, Z., Zhao, P., Shang, F., Yang, L., Liu, Y.: Video super resolution based on deep learning: a comprehensive survey. arXiv Preprint arXiv:2007.12928 (2022)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61976164, 61876221, 61876220), and Natural Science Basic Research Program of Shaanxi (Program No. 2022GY-061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongying Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L. et al. (2022). Multi Recursive Residual Dense Attention GAN for Perceptual Image Super Resolution. In: Shi, Z., Jin, Y., Zhang, X. (eds) Intelligence Science IV. ICIS 2022. IFIP Advances in Information and Communication Technology, vol 659. Springer, Cham. https://doi.org/10.1007/978-3-031-14903-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14903-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14902-3

  • Online ISBN: 978-3-031-14903-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics