Nothing Special   »   [go: up one dir, main page]

Skip to main content

ARACHNE: Automated Validation of Assurance Cases with Stochastic Contract Networks

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13414))

Included in the following conference series:

Abstract

We present ARACHNE, a framework for the automated, compositional validation of assurance cases (ACs), i.e., structured arguments about the correctness or safety of a design. ARACHNE leverages assume-guarantee contracts, expressed in a stochastic logic formalism, to formally capture AC claims (guarantees) subject to their contexts (assumptions) as well as the sources of uncertainty associated with them. Given an AC, modeled as a hierarchical network of stochastic contracts, and a library of confidence models, expressed as a set of Bayesian networks, we propose a procedure that coordinates logic and Bayesian reasoning to check that the AC argument is sound and quantify its strength in terms of a confidence measure. The effectiveness of our approach is illustrated on case studies motivated by testing and validation of airborne and automotive system software.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Due to randomness in the system or process, often quantified via objective measures from statistics (e.g., number of heads out of n tosses of a coin).

  2. 2.

    Uncertainty about the system or process (e.g., whether a coin is fair or not), often captured by subjective measures of belief.

References

  1. ISO 26262:2018: Road vehicles - Functional safety. International Organization for Standardization, Standard (2018)

    Google Scholar 

  2. DO-178C: Software considerations in airborne systems and equipment certification. RTCA Inc., Standard (2011)

    Google Scholar 

  3. Brunner, M., Huber, M., et al.: Towards an integrated model for safety and security requirements of cyber-physical systems. In: International Conference on Software Quality, Reliability and Security Companion (QRS-C) (2017)

    Google Scholar 

  4. Lee, J., Davari, H., et al.: Industrial artificial intelligence for industry 4.0-based manufacturing systems. Manuf. Lett. 18, 20–23 (2018)

    Article  Google Scholar 

  5. Bloomfield, R., Bishop, P.: Safety and assurance cases: past, present and possible future-an Adelard perspective. In: Dale, C., Anderson, T. (eds.) Making Systems Safer, pp. 51–67. Springer, London (2010). https://doi.org/10.1007/978-1-84996-086-1_4

    Chapter  Google Scholar 

  6. Rushby, J.: The interpretation and evaluation of assurance cases. Technical report, Computer Science Laboratory, SRI International (2015)

    Google Scholar 

  7. Adelard LLP: Claims, Arguments and Evidence (CAE) (2019). https://www.adelard.com/asce/choosing-asce/cae.html

  8. The Assurance Case Working Group: Goal Structuring Notation Community Standard (Version 3) (2021). https://scsc.uk/r141C

  9. Hawkins, R., Habli, I., et al.: Assurance cases and prescriptive software safety certification: a comparative study. Saf. Sci. 59, 55–71 (2013)

    Article  Google Scholar 

  10. Hawkins, R., Habli, I., et al.: Weaving an assurance case from design: a model-based approach. In: International Symposium on High Assurance Systems Engineering (2015)

    Google Scholar 

  11. Bloomfield, R., Rushby, J.: Assurance 2.0, arXiv preprint arXiv:2004.10474 (2020)

  12. Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: integrating the formal and the non-formal. In: International Conference on Engineering of Complex Computer Systems (2012)

    Google Scholar 

  13. Graydon, P.J., Holloway, C.M.: An investigation of proposed techniques for quantifying confidence in assurance arguments. Saf. Sci. 92, 53–65 (2017)

    Article  Google Scholar 

  14. Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases. In: 2011 International Symposium on Empirical Software Engineering and Measurement (2011)

    Google Scholar 

  15. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  16. Jøsang, A.: A logic for uncertain probabilities. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 9(03), 279–311 (2001)

    Article  MathSciNet  Google Scholar 

  17. Yamamoto, S.: Assuring security through attribute GSN. In: International Conference on IT Convergence and Security (ICITCS) (2015)

    Google Scholar 

  18. Nair, S., Walkinshaw, N., Kelly, T.: Quantifying uncertainty in safety cases using evidential reasoning. In: Bondavalli, A., Ceccarelli, A., Ortmeier, F. (eds.) SAFECOMP 2014. LNCS, vol. 8696, pp. 413–418. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10557-4_45

    Chapter  Google Scholar 

  19. Neapolitan, R., Neapolitan, R.: Learning Bayesian Networks. Pearson Prentice Hall, Hoboken (2004)

    MATH  Google Scholar 

  20. Adams, E.W.: A Primer of Probability Logic. Center for the Study of Language and Information (1996)

    Google Scholar 

  21. Holloway, C.M.: Explicate’78: uncovering the implicit assurance case in DO-178C. In: Safety-Critical Systems Symposium 2015 (SSS 2015) (2015)

    Google Scholar 

  22. Denney, E., Pai, G., Pohl, J.: AdvoCATE: an assurance case automation toolset. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7613, pp. 8–21. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33675-1_2

    Chapter  Google Scholar 

  23. Fujita, H., Matsuno, Y., et al.: DS-bench toolset: tools for dependability benchmarking with simulation and assurance. In: IEEE/IFIP International Conference on Dependable Systems and Networks (DSN) (2012)

    Google Scholar 

  24. Benveniste, A., Caillaud, B., et al.: Contracts for system design. Found. Trends Electron. Des. Autom. 12(2–3), 124–400 (2018)

    Article  Google Scholar 

  25. Bauer, S.S., et al.: Moving from specifications to contracts in component-based design. In: de Lara, J., Zisman, A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 43–58. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28872-2_3

    Chapter  Google Scholar 

  26. Sangiovanni-Vincentelli, A., Damm, W., Passerone, R.: Taming Dr. Frankenstein: contract-based design for cyber-physical systems. Eur. J. Control. 18(3), 217–238 (2012)

    Article  MathSciNet  Google Scholar 

  27. Nuzzo, P., Sangiovanni-Vincentelli, A.L., et al.: A platform-based design methodology with contracts and related tools for the design of cyber-physical systems. In: Proceedings of the IEEE (2015)

    Google Scholar 

  28. Gaifman, H.: Concerning measures in first order calculi. Israel J. Math. 2(1), 1–18 (1964)

    Article  MathSciNet  Google Scholar 

  29. Hailperin, T.: Probability logic. Notre Dame J. Formal Logic 25(3), 198–212 (1984)

    Article  MathSciNet  Google Scholar 

  30. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986)

    Article  MathSciNet  Google Scholar 

  31. Nuzzo, P., Li, J., et al.: Stochastic assume-guarantee contracts for cyber-physical system design. ACM Trans. Embed. Comput. Syst. 18(1), 1–26 (2019)

    Article  Google Scholar 

  32. Wang, T.E., Daw, Z., Nuzzo, P., Pinto, A.: Hierarchical contract-based synthesis for assurance cases. In: Deshmukh, J.V., Havelund, K., Perez, I. (eds.) NASA Formal Methods, pp. 175–192. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06773-0_9

    Chapter  Google Scholar 

  33. Hobbs, C., Lloyd, M.: The application of Bayesian belief networks to assurance case preparation. In: Dale, C., Anderson, T. (eds.) Achieving Systems Safety, pp. 159–176. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2494-8_12

    Chapter  Google Scholar 

  34. Verbert, K., Babuška, R., De Schutter, B.: Bayesian and Dempster-Shafer reasoning for knowledge-based fault diagnosis-a comparative study. Eng. Appl. Artif. Intell. 60, 136–150 (2017)

    Article  Google Scholar 

  35. Bovens, L., Hartmann, S.: Bayesian Epistemology. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  36. De Moura, L., Bjørner, N.: Z3: An efficient SMT solver (2008)

    Google Scholar 

  37. Ankan, A., Panda, A.: pgmpy: probabilistic graphical models using python. In: Proceedings of the 14th Python in Science Conference (SCIPY 2015). Citeseer (2015)

    Google Scholar 

  38. Zhao, X., Zhang, D., Lu, M., Zeng, F.: A new approach to assessment of confidence in assurance cases. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7613, pp. 79–91. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33675-1_7

    Chapter  Google Scholar 

  39. Shalev-Shwartz, S., Shammah, S., Shashua, A.: On a formal model of safe and scalable self-driving cars, arXiv preprint arXiv:1708.06374 (2017)

  40. Mobileye: The Mobileye safety methodology (2021). https://www.mobileye.com/safety-methodology/

  41. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

Download references

Acknowledgments

Distribution statement “A” (approved for public release, distribution unlimited). This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA), contract FA875020C0508. The views, opinions, or findings expressed are those of the authors and should not be interpreted as representing the official views or policies of the Department of Defense or the U.S. Government. The authors wish to also acknowledge the partial support by the National Science Foundation (NSF) under Awards 1839842, 1846524, and 2139982, the Office of Naval Research (ONR) under Award N00014-20-1-2258, and the Defense Advanced Research Projects Agency (DARPA) under Award HR00112010003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanwook Oh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oh, C., Naik, N., Daw, Z., Wang, T.E., Nuzzo, P. (2022). ARACHNE: Automated Validation of Assurance Cases with Stochastic Contract Networks. In: Trapp, M., Saglietti, F., Spisländer, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2022. Lecture Notes in Computer Science, vol 13414. Springer, Cham. https://doi.org/10.1007/978-3-031-14835-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14835-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14834-7

  • Online ISBN: 978-3-031-14835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics