Nothing Special   »   [go: up one dir, main page]

Skip to main content

Data-Driven Assessment of Parameterized Scenarios for Autonomous Vehicles

  • Conference paper
  • First Online:
Computer Safety, Reliability, and Security (SAFECOMP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13414))

Included in the following conference series:

Abstract

Highly automated and autonomous driving systems are usually tested for their safe behavior using a so-called scenario-based testing approach. A common practice is to let experts create parameterized scenarios by selecting and varying parameters of a given scenario type, e.g., the initial speed of the participating vehicles. By assigning concrete values to the selected parameters, scenario instances are generated, which may be used as test scenarios for the driving system under test (SUT). For the generation of test cases, parameterized scenarios typically serve as input. Most works assume parameterized scenarios to be given without evaluating their quality. However, a parameterized scenario may be insufficient, leading to inadequately and incomplete generated test cases, unreliable test results, and even incorrect conclusions about the safety of the SUT. As contribution of this work, we present a quality criterion and a novel data-driven assurance approach to assess parameterized scenarios. We consider the quality of a parameterized scenario to be acceptable if it contains at least all scenario instances collected in real traffic for the studied scenario type. For this containment check, search-based techniques are used. We show experiments for a parameterized lane change scenario using 6736 lane change recordings from real traffic for the assessment. The experiment results show that in addition to shortcomings of a parameterized scenario, those of the simulation setup can be revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdessalem, R.B., Nejati, S., Briand, L., Stifter, T.: Testing vision-based control systems using learnable evolutionary algorithms. In: Proceedings of the 40th International Conference on Software Engineering (ICSE), pp. 1016–1026. ACM (2018)

    Google Scholar 

  2. Abdessalem, R.B., Nejati, S., Briand, L.C., Stifter, T.: Testing advanced driver assistance systems using multi-objective search and neural networks. In: 31st IEEE/ACM International Conference on Automated Software Engineering, pp. 63–74 (2016)

    Google Scholar 

  3. Abdessalem, R.B., Panichella, A., Nejati, S., Briand, L.C., Stifter, T.: Testing autonomous cars for feature interaction failures using many-objective search. In: 33rd ACM/IEEE International Conference on Automated Software Engineering, pp. 143–154 (2018)

    Google Scholar 

  4. Bagschik, G., Menzel, T., Maurer, M.: Ontology based scene creation for the development of automated vehicles. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1813–1820. IEEE (2018)

    Google Scholar 

  5. Barber, C.B., Dobkin, D.P., Huhdanpaa, H.: The quickhull algorithm for convex hulls. ACM Trans. Math. Softw. (TOMS) 22(4), 469–483 (1996)

    Article  MathSciNet  Google Scholar 

  6. Calò, A., Arcaini, P., Ali, S., Hauer, F., Ishikawa, F.: Generating avoidable collision scenarios for testing autonomous driving systems. In: 13th International Conference on Software Testing, Validation and Verification (ICST), pp. 375–386. IEEE (2020)

    Google Scholar 

  7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  8. Gambi, A., Huynh, T., Fraser, G.: Generating effective test cases for self-driving cars from police reports. In: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pp. 257–267 (2019)

    Google Scholar 

  9. Gambi, A., Mueller, M., Fraser, G.: Automatically testing self-driving cars with search-based procedural content generation. In: Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis, pp. 318–328 (2019)

    Google Scholar 

  10. Gauerhof, L., Munk, P., Burton, S.: Structuring validation targets of a machine learning function applied to automated driving. In: Gallina, B., Skavhaug, A., Bitsch, F. (eds.) SAFECOMP 2018. LNCS, vol. 11093, pp. 45–58. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99130-6_4

    Chapter  Google Scholar 

  11. de Gelder, E., Paardekooper, J., Op den Camp, O., De Schutter, B.: Safety assessment of automated vehicles: how to determine whether we have collected enough field data? Traffic Inj. Prev. 20(sup1), S162–S170 (2019)

    Google Scholar 

  12. de Gelder, E., et al.: Ontology for scenarios for the assessment of automated vehicles. arXiv preprint arXiv:2001.11507 (2020)

  13. Gladisch, C., Heinz, T., Heinzemann, C., Oehlerking, J., von Vietinghoff, A., Pfitzer, T.: Experience paper: search-based testing in automated driving control applications. In: 34th IEEE/ACM International Conference on Automated Software Engineering (ASE), pp. 26–37. IEEE (2019)

    Google Scholar 

  14. Hauer, F., Gerostathopoulos, I., Schmidt, T., Pretschner, A.: Clustering traffic scenarios using mental models as little as possible. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1007–1012. IEEE (2020)

    Google Scholar 

  15. Hauer, F., Pretschner, A., Holzmüller, B.: Fitness functions for testing automated and autonomous driving systems. In: Romanovsky, A., Troubitsyna, E., Bitsch, F. (eds.) SAFECOMP 2019. LNCS, vol. 11698, pp. 69–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26601-1_5

    Chapter  Google Scholar 

  16. Hauer, F., Schmidt, T., Holzmüller, B., Pretschner, A.: Did we test all scenarios for automated and autonomous driving systems? In: IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2950–2955. IEEE (2019)

    Google Scholar 

  17. Huynh, T., Gambi, A., Fraser, G.: AC3R: automatically reconstructing car crashes from police reports. In: 2019 IEEE/ACM 41st International Conference on Software Engineering: Companion Proceedings (ICSE-Companion), pp. 31–34. IEEE (2019)

    Google Scholar 

  18. Kalra, N., Paddock, S.M.: Driving to safety: how many miles of driving would it take to demonstrate autonomous vehicle reliability? Transp. Res. Part A Policy Pract. 94, 182–193 (2016)

    Article  Google Scholar 

  19. Koopman, P., Fratrik, F.: How many operational design domains, objects, and events? In: AAAI Workshop on Artificial Intelligence Safety (2019)

    Google Scholar 

  20. Koopman, P., Kane, A., Black, J.: Credible autonomy safety argumentation. In: 27th Safety-Critical Systems Symposium (2019)

    Google Scholar 

  21. Koopman, P., Wagner, M.: Challenges in autonomous vehicle testing and validation. SAE Int. J. Transp. Saf. 4(1), 15–24 (2016)

    Article  Google Scholar 

  22. Krajewski, R., Bock, J., Kloeker, L., Eckstein, L.: The highD dataset: a drone dataset of naturalistic vehicle trajectories on German highways for validation of highly automated driving systems. In: IEEE Intelligent Transportation Systems Conference (ITSC), pp. 2118–2125 (2018)

    Google Scholar 

  23. Li, G., et al.: AV-FUZZER: finding safety violations in autonomous driving systems. In: 31st International Symposium on Software Reliability Engineering (ISSRE), pp. 25–36. IEEE (2020)

    Google Scholar 

  24. Menzel, T., Bagschik, G., Isensee, L., Schomburg, A., Maurer, M.: From functional to logical scenarios: detailing a keyword-based scenario description for execution in a simulation environment. In: IEEE Intelligent Vehicles Symposium (IV), pp. 2383–2390 (2019)

    Google Scholar 

  25. Menzel, T., Bagschik, G., Maurer, M.: Scenarios for development, test and validation of automated vehicles. In: IEEE Intelligent Vehicles Symposium (IV), pp. 1821–1827 (2018)

    Google Scholar 

  26. Mullins, G.E., Stankiewicz, P.G., Gupta, S.K.: Automated generation of diverse and challenging scenarios for test and evaluation of autonomous vehicles. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 1443–1450 (2017)

    Google Scholar 

  27. Nilsson, J., Silvlin, J., Brannstrom, M., Coelingh, E., Fredriksson, J.: If, when, and how to perform lane change maneuvers on highways. IEEE Intell. Transp. Syst. Mag. 8(4), 68–78 (2016)

    Article  Google Scholar 

  28. Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., Diermeyer, F.: Survey on scenario-based safety assessment of automated vehicles. IEEE Access 8, 87456–87477 (2020)

    Article  Google Scholar 

  29. Roesener, C., et al.: A comprehensive evaluation approach for highly automated driving. In: 25th International Technical Conference on the Enhanced Safety of Vehicles (ESV) National Highway Traffic Safety Administration (2017)

    Google Scholar 

  30. Satopaa, V., Albrecht, J., Irwin, D., Raghavan, B.: Finding a “kneedle” in a haystack: detecting knee points in system behavior. In: IEEE International Conference on Distributed Computing Systems Workshops, pp. 166–171 (2011)

    Google Scholar 

  31. Tkachenko, P., Zhou, J., del Re, L.: Unsupervised clustering of highway motion patterns. In: IEEE Intelligent Transportation Systems Conference, pp. 2337–2342 (2019)

    Google Scholar 

  32. Wachenfeld, W., Winner, H.: The release of autonomous vehicles. In: Maurer, M., Gerdes, J.C., Lenz, B., Winner, H. (eds.) Autonomous Driving, pp. 425–449. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-48847-8_21

    Chapter  Google Scholar 

  33. Zhou, J., del Re, L.: Identification of critical cases of ADAS safety by FOT based parameterization of a catalogue. In: IEEE Asian Control Conference, pp. 453–458 (2017)

    Google Scholar 

  34. Zhou, J., del Re, L.: Reduced complexity safety testing for ADAS & ADF. IFAC-PapersOnLine 50(1), 5985–5990 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Kolb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kolb, N., Hauer, F., Golagha, M., Pretschner, A. (2022). Data-Driven Assessment of Parameterized Scenarios for Autonomous Vehicles. In: Trapp, M., Saglietti, F., Spisländer, M., Bitsch, F. (eds) Computer Safety, Reliability, and Security. SAFECOMP 2022. Lecture Notes in Computer Science, vol 13414. Springer, Cham. https://doi.org/10.1007/978-3-031-14835-4_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-14835-4_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-14834-7

  • Online ISBN: 978-3-031-14835-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics