Nothing Special   »   [go: up one dir, main page]

Skip to main content

Gaussian Distribution Prior Based Multi-view Self-supervised Learning for Serous Retinal Detachment Segmentation

  • Conference paper
  • First Online:
Pattern Recognition (ACPR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13189))

Included in the following conference series:

  • 991 Accesses

Abstract

Assessment of serous retinal detachment (SRD) plays an important role in the diagnosis of central serous chorioretinopathy (CSC). In this paper, we propose an unsupervised method, called Gaussian distribution prior based Multi-view Self-supervised Learning (G-MSL), for the segmentation of SRD, in spectral domain optical coherence tomography (SD-OCT) images. We firstly count the Gaussian distribution prior for each targeted retinal layer from normal SD-OCT images. Then the Gaussian distribution prior-based fitting detects the abnormal pixels belonging to SRD in each targeted retinal layer. The generated coarse SRD region masks are used for self-supervised learning to optimize the SRD regions. The fully connected conditional random field is applied to obtain the SRD segmentation results. To improve the robustness of the proposed method for 3D SD-OCT volumes, we repeatedly carry out the above-mentioned operations from another view. The final segmentation results are obtained by getting the union of the results of multiple views. Experimental results on 20 subjects with CSC demonstrate that the proposed method can achieve the average dice similarity coefficient of 91.69%. G-MSL shows enough potential for the improvements of the clinical CSC evaluation and achieves higher segmentation accuracy than the existing supervised deep learning methods when the training set is not very large.

This study was supported in part by National Natural Science Foundation of China (62172223, 61671242), in part by Key R&D Program of Jiangsu Science and Technology Department (BE2018131) and the Fundamental Research Funds for the Central Universities (30921013105).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Semeraro, F., Morescalchi, F., Russo, A., et al.: Central serous chorioretinopathy: pathogenesis and management. Clin. Ophthalmol. 13, 2341–2352 (2019)

    Article  Google Scholar 

  2. Wu, M., Fan, W., Chen, Q., et al.: Three-dimensional continuous max flow optimization-based serous retinal detachment segmentation in SD-OCT for central serous chorioretinopathy. Biomed. Opt. Exp. 8(9), 4257 (2017)

    Article  Google Scholar 

  3. Ji, Z., et al.: Beyond retinal layers: a large blob detection for subretinal fluid segmentation in SD-OCT images. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 372–380. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_42

    Chapter  Google Scholar 

  4. Sun, Y., Niu, S., Dong, J., Chen, Y.: 3D level set method via local structure similarity factor for automatic neurosensory retinal detachment segmentation in retinal SD-OCT images. In: Knight, K., Zhang, C., Holmes, G., Zhang, M.-L. (eds.) ICAI 2019. CCIS, vol. 1001, pp. 83–92. Springer, Singapore (2019). https://doi.org/10.1007/978-981-32-9298-7_7

    Chapter  Google Scholar 

  5. Sun, Z., Chen, H., Shi, F., et al.: An automated framework for 3D serous pigment epithelium detachment segmentation in SD-OCT images. Sci. Rep. 6(1), 21739 (2016)

    Article  Google Scholar 

  6. Roy, A.G., Conjeti, S., Karri, S.P.K., et al.: ReLayNet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)

    Article  Google Scholar 

  7. Gao, K., Niu, S., Ji, Z., et al.: Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Comput. Methods Programs Biomed. 176, 69–80 (2019)

    Article  Google Scholar 

  8. Bekalo, L., Niu, S., He, X.J., et al.: Automated 3-D retinal layer segmentation from SD-OCT images with neurosensory retinal detachment. IEEE Access 7, 14894–14907 (2019)

    Article  Google Scholar 

  9. Yang, J., Ji, Z., Niu, S., et al.: RMPPNet: residual multiple pyramid pooling network for subretinal fluid segmentation in SD-OCT images. OSA Continuum 3(7), 1751 (2020)

    Article  Google Scholar 

  10. Gao, Z., Wang, X., Li, Y.: Automatic segmentation of macular edema in retinal OCT images using improved U-Net++. Appl. Sci. 10(16), 5701 (2020)

    Article  Google Scholar 

  11. Jin, Q., Meng, Z., Pham, T.D., et al.: DUNet: a deformable network for retinal vessel segmentation. Knowl.-Based Syst. 178, 149–162 (2019)

    Article  Google Scholar 

  12. Krähenbühl, P., Koltun, V.: Efficient inference in fully connected CRFs with Gaussian edge potentials. Adv. Neural. Inf. Process. Syst. 24, 109–117 (2011)

    Google Scholar 

  13. Zhang, Y., et al.: Robust layer segmentation against complex retinal abnormalities for en face OCTA generation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 647–655. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_62

    Chapter  Google Scholar 

  14. Apostolopoulos, S., De Zanet, S., Ciller, C., Wolf, S., Sznitman, R.: Pathological OCT retinal layer segmentation using branch residual U-shape networks. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 294–301. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_34

    Chapter  Google Scholar 

  15. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  16. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  17. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

  18. Huang, H., Lin, L., Tong, R., et al.: UNet 3+: a full-scale connected UNet for medical image segmentation. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1055–1059 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, S., Zhang, Y., Li, M., Ji, Z., Yuan, S., Chen, Q. (2022). Gaussian Distribution Prior Based Multi-view Self-supervised Learning for Serous Retinal Detachment Segmentation. In: Wallraven, C., Liu, Q., Nagahara, H. (eds) Pattern Recognition. ACPR 2021. Lecture Notes in Computer Science, vol 13189. Springer, Cham. https://doi.org/10.1007/978-3-031-02444-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02444-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02443-6

  • Online ISBN: 978-3-031-02444-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics