Nothing Special   »   [go: up one dir, main page]

Skip to main content

Detecting Swimmers in Unconstrained Videos with Few Training Data

  • Conference paper
  • First Online:
Machine Learning and Data Mining for Sports Analytics (MLSA 2021)

Abstract

In this work, we propose a method to detect swimmers in unconstrained swimming videos, using a Unet-based model trained on a small dataset. Our main motivation is to make the method accessible without spending much time or money in annotation or computation while maintaining performances. The swimming videos can be recorded from various locations with different settings (distance and angle to the pool, light conditions, reflections, camera resolution), which alleviates a lot of the usual video capture constraints. As a result, our model reaches top-performances in detection compared to other methods. Every algorithm described in the paper is accessible online at https://github.com/njacquelin/swimmers_detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benarab, D., Napoléon, T., Alfalou, A., Verney, A., Hellard, P.: A novel multitracking system for the evaluation of high-level swimmers performances. Baltimore, United States, May 2014

    Google Scholar 

  2. Benarab, D., Napoléon, T., Alfalou, A., Verney, A., Hellard, P.: Optimized swimmer tracking system by a dynamic fusion of correlation and color histogram techniques. Optics Commun. 356, 256–268 (2015)

    Article  Google Scholar 

  3. Benarab, D., Napoléon, T., Alfalou, A., Verney, A., Hellard, P.: Optimized swimmer tracking system based on a novel multi-related-targets approach. Optics Lasers Eng. 89, 195–202 (2016)

    Article  Google Scholar 

  4. Chapelle, O., Zien, A., Schölkopf, B.: Semi-Supervised Learning. MIT Press, Cambridge (2006)

    Book  Google Scholar 

  5. COCO: Coco detection metric (2021). https://cocodataset.org/#detection-eval

  6. DarrenL: Labelimg , December 2018. https://github.com/tzutalin/labelImg

  7. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  8. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129(6), 1789–1819 (2021)

    Article  Google Scholar 

  9. Hall, A., et al.: The detection, tracking, and temporal action localisation of swimmers for automated analysis. Neural Comput. App. 33, 1–19 (2021)

    Google Scholar 

  10. Lin, T.Y., et al.: Microsoft COCO: Common objects in context (2015)

    Google Scholar 

  11. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  12. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: Unified, real-time object detection (2016). http://www.poker-edge.com/stats.php

  13. Redmon, J., Farhadi, A.: Yolov3: an incremental improvement (2018)

    Google Scholar 

  14. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks (2016)

    Google Scholar 

  15. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation (2015)

    Google Scholar 

  16. Woinoski, T., Bajić, I.V.: Swimmer stroke rate estimation from overhead race video (2021)

    Google Scholar 

Download references

Acknowledgement

We thanks Renaud Jester form Ecole Centrale de Lyon and David Simbada & Robin Pla from the FFN (French Swimming Federation) for their contributions and expertise through project NePTUNE. Also thanks to Méghane Decroocq for proofreading the article. This work was funded by the CNRS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Jacquelin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jacquelin, N., Vuillemot, R., Duffner, S. (2022). Detecting Swimmers in Unconstrained Videos with Few Training Data. In: Brefeld, U., Davis, J., Van Haaren, J., Zimmermann, A. (eds) Machine Learning and Data Mining for Sports Analytics. MLSA 2021. Communications in Computer and Information Science, vol 1571. Springer, Cham. https://doi.org/10.1007/978-3-031-02044-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-02044-5_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-02043-8

  • Online ISBN: 978-3-031-02044-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics