Nothing Special   »   [go: up one dir, main page]

Skip to main content

Explainable Clinical Decision Support: Towards Patient-Facing Explanations for Education and Long-Term Behavior Change

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2022)

Abstract

There is an increasing shift towards the self-management of long-term chronic illness by patients in a home setting, supported by personal health electronic equipment. Among others, self-management requires comprehensive education on the illness, i.e., understanding the effects of nutritional, fitness, and medication choices on personal health; and long-term health behavior change, i.e., modifying unhealthy lifestyles that contribute to chronic illness. Smart health recommendations, generated using AI-based Clinical Decision Support (CDS), can guide patients towards positive nutritional, fitness, and health behavioral choices. Moreover, we posit that explaining these recommendations to patients, using Explainable AI (XAI) techniques, will effect education and positive behavior change. We present our work towards an explanation framework for rule-based CDS, called EXPLAIN (EXPLanations of AI In N3), which aims to generate human-readable, patient-facing explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Future work involves describing the underlying scientific explanation as well.

References

  1. AndroJena. https://github.com/lencinhaus/androjena

  2. Punya platform. http://punya.mit.edu/

  3. Arndt, D., Van Woensel, W., Tomaszuk, D.: Notation3: draft community group report (2021). https://w3c.github.io/N3/spec/

  4. Bandura, A.: Social cognitive theory of self-regulation. Organ. Behav. Hum. Decis. Process. 50(2), 248–287 (1991)

    Article  Google Scholar 

  5. Berners-Lee, T., McCusker, J., Del Rio, N.: Provenance Markup Language (PML 3.0). https://github.com/timrdf/pml

  6. Chari, S., Gruen, D.M., Seneviratne, O., McGuinness, D.L.: Foundations of explainable knowledge-enabled systems. In: Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications and Challenges, Studies on the Semantic Web, vol. 47, pp. 23–48. IOS Press (2020). https://doi.org/10.3233/SSW200010

  7. Chari, S., Seneviratne, O., Gruen, D.M., Foreman, M.A., Das, A.K., McGuinness, D.L.: Explanation ontology: a model of explanations for user-centered AI. In: Pan, J.Z., Tamma, V., d’Amato, C., Janowicz, K., Fu, B., Polleres, A., Seneviratne, O., Kagal, L. (eds.) ISWC 2020. LNCS, vol. 12507, pp. 228–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62466-8_15

    Chapter  Google Scholar 

  8. De Roo, J.: Euler Yet another proof Engine - EYE. https://josd.github.io/eye/

  9. Peleg, M.: Computer-interpretable clinical guidelines: a methodological review. J. Biomed. Inf. 46(4), 744–763 (2013)

    Article  Google Scholar 

  10. Rose-Davis, B., Van Woensel, W., Abidi, S.R., Stringer, E., Abidi, S.S.R.: Semantic knowledge modeling and evaluation of argument theory to develop dialogue based patient education systems for chronic disease self-management. Int. J. Med. Inf. 160, 104693 (2022)

    Article  Google Scholar 

  11. Sanneman, L., Shah, J.A.: A situation awareness-based framework for design and evaluation of explainable AI. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) EXTRAAMAS 2020. LNCS (LNAI), vol. 12175, pp. 94–110. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51924-7_6

    Chapter  Google Scholar 

  12. Shirai, S., Seneviratne, O., McGuinness, D.L.: Applying personal knowledge graphs to health. CoRR abs/2104.07587 (2021). https://arxiv.org/abs/2104.07587

  13. van der Waa, J., Nieuwburg, E., Cremers, A., Neerincx, M.: Evaluating XAI: a comparison of rule-based and example-based explanations. Artif. Intell. 291, 103404 (2021)

    Article  MathSciNet  Google Scholar 

  14. Patton, E., Van Woensel, W., Seneviratne, O., Loseto, G., Scioscia, F., Kagal, L. Development of AI-enabled apps by patients and domain experts using the punya platform: a case study for diabetes. In: 20th International Conference on Artificial Intelligence in Medicine (2022)

    Google Scholar 

  15. Van Woensel, W.: AndroJena + PML. https://github.com/william-vw/androjena_jre

  16. Van Woensel, W., Baig, W.H., Abidi, S.S.R., Abidi, S.R.: A semantic web framework for behavioral user modeling and action planning for personalized behavior modification. In: 10th International Conference on Semantic Web Applications and Tools for Life Sciences. CEUR, Rome, Italy (2017)

    Google Scholar 

  17. World health organization: innovative care for chronic conditions. Technical report (2002). https://www.who.int/chp/knowledge/publications/icccglobalreport.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Van Woensel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Woensel, W.V. et al. (2022). Explainable Clinical Decision Support: Towards Patient-Facing Explanations for Education and Long-Term Behavior Change. In: Michalowski, M., Abidi, S.S.R., Abidi, S. (eds) Artificial Intelligence in Medicine. AIME 2022. Lecture Notes in Computer Science(), vol 13263. Springer, Cham. https://doi.org/10.1007/978-3-031-09342-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09342-5_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09341-8

  • Online ISBN: 978-3-031-09342-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics