Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi Layered Feature Explanation Method for Convolutional Neural Networks

  • Conference paper
  • First Online:
Pattern Recognition and Artificial Intelligence (ICPRAI 2022)

Abstract

The most popular methods for Artificial Intelligence such as Deep Neural Networks are, for the vast majority, considered black boxes. It is necessary to explain their decisions to understand the input data which influence most the result.

Methods presented in this paper aim at an explanation in image classification tasks: which data in the input are the most important for the result. We further extend the Feature Explanation Method (FEM) from our previous work, transforming it into a multi-layered FEM (MLFEM). The evaluation of the method is designed by comparison of explanation maps with human Gaze Fixation Density maps (GFDM). We show that proposed MLFEM outperforms FEM and popular DNN explanation methods in terms of classical comparison metrics with GFDM.

Supported by LaBRI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ayyar, M.P., Benois-Pineau, J., Zemmari, A.: White box methods for explanations of convolutional neural networks in image classification tasks (2021)

    Google Scholar 

  2. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should i trust you? explaining the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  3. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Proceedings of European Conference on Computer Vision, pp. 818–833. Springer, Cham (2014). https://doi.org/10.48550/arXiv.1311.2901

  4. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. Int. J. Comput. Vis. 128(2), 336–359 (2019)

    Article  Google Scholar 

  5. Smilkov, D., Thorat, N., Kim, B., Viégas, F.B., Wattenberg, M.: Smoothgrad: removing noise by adding noise. CoRR, abs/1706.03825:1–10 (2017)

    Google Scholar 

  6. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: Proceedings of International Conference on Machine Learning, PMLR, pp. 3319–3328 (2017)

    Google Scholar 

  7. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, e0130140 (2015)

    Article  Google Scholar 

  8. Ahmed Asif Fuad, K., Martin, P.E., Giot, R., Bourqui, R., Benois-Pineau, J., Zemmari, A.: Features understanding in 3D CNNs for actions recognition in video. In: Tenth International Conference on Image Processing Theory, Tools and Applications, IPTA 2020, Paris, France, October 2020

    Google Scholar 

  9. Zemmari, A., Benois-Pineau, J.: Introducing Domain Knowledge. In: Deep Learning in Mining of Visual Content. SCS, pp. 87–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-34376-7_9

  10. Obeso, A.M., Benois-Pineau, J., García-Vázquez, M.S., Ramírez-Acosta, A.A.: Visual vs internal attention mechanisms in deep neural networks for image classification and object detection. Pattern Recognit. 123, 108411 (2022)

    Article  Google Scholar 

  11. Rousseau, F., Drumetz, L., Fablet, R.: Residual networks as flows of diffeomorphisms. J. Math. Imag. Vis. 62, 04 (2020)

    Article  MATH  Google Scholar 

  12. Kingma, D.P., Lei Ba, J.: A method for stochastic optimization, Adam (2017)

    Google Scholar 

  13. Jouis, G., Mouchère, H., Picarougne, F., Hardouin, A.: Anchors vs attention: Comparing XAI on a real-life use case. In: ICPR Workshops (3). LNCS, vol. 12663, pp. 219–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68796-0_16

  14. Jiang, M., Huang, S., Duan, J., Zhao, Q.: Salicon: Saliency in context. In: The IEEE Conference on Computer Vision and Pattern Recognition, CVPR, vol. 6 (2015)

    Google Scholar 

  15. Borji, A., Itti, L.: CAT2000: a large scale fixation dataset for boosting saliency research. CoRR, abs/1505.03581 (2015)

    Google Scholar 

  16. Le Meur, O., Baccino, T.: Methods for comparing scanpaths and saliency maps: strengths and weaknesses. Behav. Res. Methods 45(1), 251–266 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jenny Benois-Pineau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bourroux, L., Benois-Pineau, J., Bourqui, R., Giot, R. (2022). Multi Layered Feature Explanation Method for Convolutional Neural Networks. In: El Yacoubi, M., Granger, E., Yuen, P.C., Pal, U., Vincent, N. (eds) Pattern Recognition and Artificial Intelligence. ICPRAI 2022. Lecture Notes in Computer Science, vol 13363. Springer, Cham. https://doi.org/10.1007/978-3-031-09037-0_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-09037-0_49

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-09036-3

  • Online ISBN: 978-3-031-09037-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics