Abstract
Automatic art analysis comprises of utilizing diverse processing methods to classify and categorize works of art. When working with this kind of pictures, we have to take under consideration different considerations compared to classical picture handling, since works of art alter definitely depending on the creator, the scene delineated or their aesthetic fashion. This extra data improves the visual signals gotten from the images and can lead to better performance. However, this information needs to be modeled and embed alongside the visual features of the image. This is often performed utilizing deep learning models, but they are expensive to train. In this paper we utilize the Fuzzy C-Means algorithm to create a embedding strategy based on fuzzy memberships to extract relevant information from the clusters present in the contextual information. We extend an existing state-of-the-art art classification system utilizing this strategy to get a new version that presents similar results without training additional deep learning models.
Javier Fumanal Idocin and Humberto Bustince’s research has been supported by the project PID2019-108392GB I00 (AEI/10.13039/501100011033). Zdenko Takáč and L’ubomíra Horanská’s research has been supported by the grant VEGA 1/0267/21.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aizawa, A.: An information-theoretic perspective of TF-IDF measures. Inf. Process. Manage. 39(1), 45–65 (2003)
Akça, S., Akbulut, M.: Social network analysis of mythology field. Library Hi Tech (2021)
Aloysius, N., Geetha, M.: A review on deep convolutional neural networks. In: 2017 International Conference on Communication and Signal Processing (ICCSP), pp. 0588–0592. IEEE (2017)
Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. J. Med. Syst. 42(11), 1–13 (2018)
Barni, M., Pelagotti, A., Piva, A.: Image processing for the analysis and conservation of paintings: opportunities and challenges. IEEE Signal Process. Mag. 22(5), 141–144 (2005)
Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)
Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)
Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exper. 2008(10) (2008)
Bounabi, M., Moutaouakil, K., Satori, K.: Text classification using fuzzy TF-IDF and machine learning models. In: BDIoT 2019 (2019)
Carneiro, G., da Silva, N.P., Del Bue, A., Costeira, J.P.: Artistic image classification: an analysis on the PRINTART database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 143–157. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_11
Caruana, R.: Multitask learning. Machine Learn. 28(1), 41–75 (1997)
Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)
Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)
Crowley, E.J., Zisserman, A.: The art of detection. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 721–737. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_50
Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. Adv. Neural. Inf. Process. Syst. 27, 766–774 (2014)
Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., Minárová, M.: Community detection and social network analysis based on the Italian wars of the 15th century. Futur. Gener. Comput. Syst. 113, 25–40 (2020)
Fumanal-Idocin, J., Cordón, O., Dimuro, G., Minárová, M., Bustince, H.: The concept of semantic value in social network analysis: an application to comparative mythology. arXiv preprint arXiv:2109.08023 (2021)
Garcia, N., Renoust, B., Nakashima, Y.: Context-aware embeddings for automatic art analysis. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, pp. 25–33 (2019)
Garcia, N., Vogiatzis, G.: How to read paintings: semantic art understanding with multi-modal retrieval. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 676–691. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_52
Grohe, M.: word2vec, node2vec, graph2vec, x2vec: towards a theory of vector embeddings of structured data. In: Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 1–16 (2020)
Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)
Guo, B., Hao, P.: Analysis of artistic styles in oil painting using deep-learning features. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–4. IEEE (2020)
Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43, 4037–4058 (2021)
Kim, D., Seo, D., Cho, S., Kang, P.: Multi-co-training for document classification using various document representations: TF-IDF, LDA, and doc2vec. Inf. Sci. 477, 15–29 (2019)
Lecoutre, A., Negrevergne, B., Yger, F.: Recognizing art style automatically in painting with deep learning. In: Asian Conference on Machine Learning, pp. 327–342. PMLR (2017)
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
Lombardi, T.E.: The classification of style in fine-art painting. Pace University (2005)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)
Newman, M.: Networks. Oxford University Press, Oxford (2018)
Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)
Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814 (2005)
Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature learning by inpainting. In:2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)
Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In: EMNLP (2015)
Qaiser, S., Ali, R.: Text mining: use of TF-IDF to examine the relevance of words to documents. Int. J. Comput. Appl. 181(1), 25–29 (2018)
Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)
Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: Learning feature matching with graph neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4937–4946 (2020)
Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. arXiv preprint arXiv:1810.04650 (2018)
Shamir, L., Macura, T., Orlov, N., Eckley, D.M., Goldberg, I.G.: Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. ACM Trans. Appl. Percept. (TAP) 7(2), 1–17 (2010)
Taber, R.: Knowledge processing with fuzzy cognitive maps. Expert Syst. Appl. 2(1), 83–87 (1991)
Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: Ceci n’est pas une pipe: a deep convolutional network for fine-art paintings classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3703–3707. IEEE (2016)
Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)
Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI global (2010)
Vaigh, C.B.E., Garcia, N., Renoust, B., Chu, C., Nakashima, Y., Nagahara, H.: Gcnboost: artwork classification by label propagation through a knowledge graph. arXiv preprint arXiv:2105.11852 (2021)
Vijayarani, S., Ilamathi, M.J., Nithya, M., et al.: Preprocessing techniques for text mining-an overview. Int. J. Comput. Sci. Commun. Networks 5(1), 7–16 (2015)
Wang, H., Zhang, F., Zhao, M., Li, W., Xie, X., Guo, M.: Multi-task feature learning for knowledge graph enhanced recommendation. In: The World Wide Web Conference (2019)
Zeng, Y., Gong, Y., Zeng, X.: Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor. Pattern Recogn. Lett. 133, 158–164 (2020)
Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Fumanal-Idocin, J., Takáč, Z., Horanská, L., Bustince, H., Cordon, O. (2022). Fuzzy Clustering to Encode Contextual Information in Artistic Image Classification. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1602. Springer, Cham. https://doi.org/10.1007/978-3-031-08974-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-08974-9_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08973-2
Online ISBN: 978-3-031-08974-9
eBook Packages: Computer ScienceComputer Science (R0)