Nothing Special   »   [go: up one dir, main page]

Skip to main content

Fuzzy Clustering to Encode Contextual Information in Artistic Image Classification

  • Conference paper
  • First Online:
Information Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU 2022)

Abstract

Automatic art analysis comprises of utilizing diverse processing methods to classify and categorize works of art. When working with this kind of pictures, we have to take under consideration different considerations compared to classical picture handling, since works of art alter definitely depending on the creator, the scene delineated or their aesthetic fashion. This extra data improves the visual signals gotten from the images and can lead to better performance. However, this information needs to be modeled and embed alongside the visual features of the image. This is often performed utilizing deep learning models, but they are expensive to train. In this paper we utilize the Fuzzy C-Means algorithm to create a embedding strategy based on fuzzy memberships to extract relevant information from the clusters present in the contextual information. We extend an existing state-of-the-art art classification system utilizing this strategy to get a new version that presents similar results without training additional deep learning models.

Javier Fumanal Idocin and Humberto Bustince’s research has been supported by the project PID2019-108392GB I00 (AEI/10.13039/501100011033). Zdenko Takáč and L’ubomíra Horanská’s research has been supported by the grant VEGA 1/0267/21.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aizawa, A.: An information-theoretic perspective of TF-IDF measures. Inf. Process. Manage. 39(1), 45–65 (2003)

    Article  Google Scholar 

  2. Akça, S., Akbulut, M.: Social network analysis of mythology field. Library Hi Tech (2021)

    Google Scholar 

  3. Aloysius, N., Geetha, M.: A review on deep convolutional neural networks. In: 2017 International Conference on Communication and Signal Processing (ICCSP), pp. 0588–0592. IEEE (2017)

    Google Scholar 

  4. Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. J. Med. Syst. 42(11), 1–13 (2018)

    Article  Google Scholar 

  5. Barni, M., Pelagotti, A., Piva, A.: Image processing for the analysis and conservation of paintings: opportunities and challenges. IEEE Signal Process. Mag. 22(5), 141–144 (2005)

    Article  Google Scholar 

  6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  7. Bezdek, J.C., Ehrlich, R., Full, W.: FCM: the fuzzy c-means clustering algorithm. Comput. Geosci. 10(2–3), 191–203 (1984)

    Article  Google Scholar 

  8. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exper. 2008(10) (2008)

    Google Scholar 

  9. Bounabi, M., Moutaouakil, K., Satori, K.: Text classification using fuzzy TF-IDF and machine learning models. In: BDIoT 2019 (2019)

    Google Scholar 

  10. Carneiro, G., da Silva, N.P., Del Bue, A., Costeira, J.P.: Artistic image classification: an analysis on the PRINTART database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 143–157. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_11

    Chapter  Google Scholar 

  11. Caruana, R.: Multitask learning. Machine Learn. 28(1), 41–75 (1997)

    Article  MathSciNet  Google Scholar 

  12. Chen, X., Jia, S., Xiang, Y.: A review: knowledge reasoning over knowledge graph. Expert Syst. Appl. 141, 112948 (2020)

    Article  Google Scholar 

  13. Collobert, R., Weston, J.: A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)

    Google Scholar 

  14. Crowley, E.J., Zisserman, A.: The art of detection. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 721–737. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_50

    Chapter  Google Scholar 

  15. Dosovitskiy, A., Springenberg, J.T., Riedmiller, M., Brox, T.: Discriminative unsupervised feature learning with convolutional neural networks. Adv. Neural. Inf. Process. Syst. 27, 766–774 (2014)

    Google Scholar 

  16. Fumanal-Idocin, J., Alonso-Betanzos, A., Cordón, O., Bustince, H., Minárová, M.: Community detection and social network analysis based on the Italian wars of the 15th century. Futur. Gener. Comput. Syst. 113, 25–40 (2020)

    Article  Google Scholar 

  17. Fumanal-Idocin, J., Cordón, O., Dimuro, G., Minárová, M., Bustince, H.: The concept of semantic value in social network analysis: an application to comparative mythology. arXiv preprint arXiv:2109.08023 (2021)

  18. Garcia, N., Renoust, B., Nakashima, Y.: Context-aware embeddings for automatic art analysis. In: Proceedings of the 2019 on International Conference on Multimedia Retrieval, pp. 25–33 (2019)

    Google Scholar 

  19. Garcia, N., Vogiatzis, G.: How to read paintings: semantic art understanding with multi-modal retrieval. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11130, pp. 676–691. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11012-3_52

    Chapter  Google Scholar 

  20. Grohe, M.: word2vec, node2vec, graph2vec, x2vec: towards a theory of vector embeddings of structured data. In: Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pp. 1–16 (2020)

    Google Scholar 

  21. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  22. Guo, B., Hao, P.: Analysis of artistic styles in oil painting using deep-learning features. In: 2020 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–4. IEEE (2020)

    Google Scholar 

  23. Jing, L., Tian, Y.: Self-supervised visual feature learning with deep neural networks: a survey. IEEE Trans. Pattern Anal. Mach. Intell. 43, 4037–4058 (2021)

    Article  Google Scholar 

  24. Kim, D., Seo, D., Cho, S., Kang, P.: Multi-co-training for document classification using various document representations: TF-IDF, LDA, and doc2vec. Inf. Sci. 477, 15–29 (2019)

    Article  Google Scholar 

  25. Lecoutre, A., Negrevergne, B., Yger, F.: Recognizing art style automatically in painting with deep learning. In: Asian Conference on Machine Learning, pp. 327–342. PMLR (2017)

    Google Scholar 

  26. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  27. Lombardi, T.E.: The classification of style in fine-art painting. Pace University (2005)

    Google Scholar 

  28. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  29. Newman, M.: Networks. Oxford University Press, Oxford (2018)

    Book  Google Scholar 

  30. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  31. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814 (2005)

    Article  Google Scholar 

  32. Pathak, D., Krähenbühl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: Feature learning by inpainting. In:2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544 (2016)

    Google Scholar 

  33. Poria, S., Cambria, E., Gelbukh, A.: Deep convolutional neural network textual features and multiple kernel learning for utterance-level multimodal sentiment analysis. In: EMNLP (2015)

    Google Scholar 

  34. Qaiser, S., Ali, R.: Text mining: use of TF-IDF to examine the relevance of words to documents. Int. J. Comput. Appl. 181(1), 25–29 (2018)

    Google Scholar 

  35. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  36. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv preprint arXiv:1706.05098 (2017)

  37. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: Learning feature matching with graph neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4937–4946 (2020)

    Google Scholar 

  38. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. arXiv preprint arXiv:1810.04650 (2018)

  39. Shamir, L., Macura, T., Orlov, N., Eckley, D.M., Goldberg, I.G.: Impressionism, expressionism, surrealism: automated recognition of painters and schools of art. ACM Trans. Appl. Percept. (TAP) 7(2), 1–17 (2010)

    Article  Google Scholar 

  40. Taber, R.: Knowledge processing with fuzzy cognitive maps. Expert Syst. Appl. 2(1), 83–87 (1991)

    Article  Google Scholar 

  41. Tan, W.R., Chan, C.S., Aguirre, H.E., Tanaka, K.: Ceci n’est pas une pipe: a deep convolutional network for fine-art paintings classification. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 3703–3707. IEEE (2016)

    Google Scholar 

  42. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)

  43. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI global (2010)

    Google Scholar 

  44. Vaigh, C.B.E., Garcia, N., Renoust, B., Chu, C., Nakashima, Y., Nagahara, H.: Gcnboost: artwork classification by label propagation through a knowledge graph. arXiv preprint arXiv:2105.11852 (2021)

  45. Vijayarani, S., Ilamathi, M.J., Nithya, M., et al.: Preprocessing techniques for text mining-an overview. Int. J. Comput. Sci. Commun. Networks 5(1), 7–16 (2015)

    Google Scholar 

  46. Wang, H., Zhang, F., Zhao, M., Li, W., Xie, X., Guo, M.: Multi-task feature learning for knowledge graph enhanced recommendation. In: The World Wide Web Conference (2019)

    Google Scholar 

  47. Zeng, Y., Gong, Y., Zeng, X.: Controllable digital restoration of ancient paintings using convolutional neural network and nearest neighbor. Pattern Recogn. Lett. 133, 158–164 (2020)

    Article  Google Scholar 

  48. Zhang, Y., Yang, Q.: An overview of multi-task learning. Natl. Sci. Rev. 5(1), 30–43 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Fumanal-Idocin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fumanal-Idocin, J., Takáč, Z., Horanská, L., Bustince, H., Cordon, O. (2022). Fuzzy Clustering to Encode Contextual Information in Artistic Image Classification. In: Ciucci, D., et al. Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU 2022. Communications in Computer and Information Science, vol 1602. Springer, Cham. https://doi.org/10.1007/978-3-031-08974-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08974-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08973-2

  • Online ISBN: 978-3-031-08974-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics