Abstract
In enhanced oil recovery (EOR) processes, foam injection reduces gas mobility and increases apparent viscosity, thus increasing recovery efficiency. The quantification of uncertainty is essential in developing and evaluating mathematical models. In this work, we perform uncertainty quantification (UQ) of two-phase flow models for foam injection using the STARS model with data from a series of foam quality-scan experiments. We first performed the parameter estimation based on three datasets of foam quality-scans on Indiana limestone carbonate core samples. Then distributions of the parameters are inferred via the Markov Chain Monte Carlo method (MCMC). This approach allows propagating parametric uncertainty to the STARS apparent viscosity model. In particular, the framework for UQ allowed us to identify how the lack of experimental data affected the reliability of the calibrated models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ashoori, E., Marchesin, D., Rossen, W.: Roles of transient and local equilibrium foam behavior in porous media-traveling wave. In: ECMOR XII-12th European Conference on the Mathematics of Oil Recovery, p. 163. European Association of Geoscientists and Engineers (2010)
Berg, S., Unsal, E., Dijk, H.: Non-uniqueness and uncertainty quantification of relative permeability measurements by inverse modelling. Comput. Geotech. 132, 103964 (2021)
Boeije, C., Rossen, W.: Fitting foam simulation model parameters to data. In: IOR 2013–17th European Symposium on Improved Oil Recovery, p. 342. European Association of Geoscientists and Engineers (2013)
Brooks, S.: Markov chain Monte Carlo method and its application. J. R. Stat. Soc. Ser. D (Stat.) 47(1), 69–100 (1998)
Chen, Y., et al.: Switchable nonionic to cationic ethoxylated amine surfactants for CO\(_2\) enhanced oil recovery in high-temperature, high-salinity carbonate reservoirs. SPE J. 19(02), 249–259 (2014)
(CMG): Stars users manual; version 2019.10 (2019)
Facanha, J.M.F., Souza, A.V.O., Gramatges, A.P.: Comportamento de espumas em rochas carbonáticas análogas: comparação com curvas de traçador e efeito da permeabilidade. In: Rio Oil and Gas Expo and Conference. Brazilian Petroleum, Gas and Biofuels Institute - IBP (2020). https://doi.org/10.48072/2525-7579.rog.2020.039
Farajzadeh, R., Lotfollahi, M., Eftekhari, A.A., Rossen, W.R., Hirasaki, G.J.H.: Effect of permeability on implicit-texture foam model parameters and the limiting capillary pressure. Energy Fuels 29(5), 3011–3018 (2015)
Herman, J., Usher, W.: SALib: an open-source python library for sensitivity analysis. J. Open Source Softw. 2(9), 97 (2017). https://doi.org/10.21105/joss.00097
Kam, S.I.: Improved mechanistic foam simulation with foam catastrophe theory. Colloids Surf. A Physicochemical Eng. Aspects 318(1–3), 62–77 (2008)
Lotfollahi, M., Farajzadeh, R., Delshad, M., Varavei, A., Rossen, W.R.: Comparison of implicit-texture and population-balance foam models. J. Nat. Gas Sci. Eng. 31, 184–197 (2016)
Ma, K., Lopez-Salinas, J.L., Puerto, M.C., Miller, C.A., Biswal, S.L., Hirasaki, G.J.: Estimation of parameters for the simulation of foam flow through porous media. Part 1: the dry-out effect. Energy Fuels 27(5), 2363–2375 (2013)
Mohamed, I., Nasr-El-Din, H., et al.: Formation damage due to CO\(_2\) sequestration in deep saline carbonate aquifers. In: SPE International Symposium and Exhibition on Formation Damage Control. Society of Petroleum Engineers (2012)
Newville, M., Stensitzki, T., Allen, D.B., Rawlik, M., Ingargiola, A., Nelson, A.: LMFIT: non-linear least-square minimization and curve-fitting for python. In: Astrophysics Source Code Library, p. ascl-1606 (2016)
Salvatier, J., Wiecki, T.V., Fonnesbeck, C.: Probabilistic programming in python using PyMC3. PeerJ Comput. Sci. 2, e55 (2016)
Valdez, A.R., et al.: Foam-assisted water-gas flow parameters: from core-flood experiment to uncertainty quantification and sensitivity analysis. Transp. Porous Media 1–21 (2021). https://doi.org/10.1007/s11242-021-01550-0
Valdez, A.R., Rocha, B.M., Chapiro, G., dos Santos, R.W.: Uncertainty quantification and sensitivity analysis for relative permeability models of two-phase flow in porous media. J. Pet. Sci. Eng. 192, 107297 (2020)
Zeng, Y., et al.: Insights on foam transport from a texture-implicit local-equilibrium model with an improved parameter estimation algorithm. Ind. Eng. Chem. Res. 55(28), 7819–7829 (2016)
Zitha, P., Du, D.: A new stochastic bubble population model for foam flow in porous media. Transp. Porous Media 83(3), 603–621 (2010)
Acknowledgements
The authors thank Dr. Ivan Landin for suggestions on improving the manuscript.
This research was carried out in association with the ongoing R&D projects ANP number 20358-8, “Desenvolvimento de formulações contendo surfactantes e nanopartículas para controle de mobilidade de gás usando espumas para recuperação avançada de petróleo” (PUC-Rio/Shell Brasil/ANP) and ANP number 201715-9, “Modelagem matemática e computacional de injeção de espuma usa em recuperação de petróleo” (UFJF/Shell Brazil/ANP) sponsored by Shell Brasil under the ANP R&D levy as “Compromisso de Investimentos com Pesquisa e Desenvolvimento”, in partnership with Petrobras.
G.C. was supported in part by CNPq grant 303245/2019-0 and FAPEMIG grant APQ-00405-21. B. M. R. was supported in part by CNPq grant 310722/2021-7.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
de Miranda, G.B. et al. (2022). Characterization of Foam-Assisted Water-Gas Flow via Inverse Uncertainty Quantification Techniques. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-08760-8_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08759-2
Online ISBN: 978-3-031-08760-8
eBook Packages: Computer ScienceComputer Science (R0)