Nothing Special   »   [go: up one dir, main page]

Skip to main content

Time Series Attention Based Transformer Neural Turing Machines for Diachronic Graph Embedding in Cyber Threat Intelligence

  • Conference paper
  • First Online:
Computational Science – ICCS 2022 (ICCS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13353))

Included in the following conference series:

  • 1445 Accesses

Abstract

The cyber threats are often found to threaten individuals, organizations and countries at different levels and evolve continuously over time. Cyber Threat Intelligence (CTI) is an effective approach to solve cyber security problems. However, existing processes are considered inherent responses to known threats. CTI experts recommend proactively checking for emerging threats in existing knowledge. In addition, most researches focus on static snapshots of the CTI knowledge graph, while ignoring the temporal dynamics. To this end, we create a novel framework TSA-TNTM (Time Series Attention based Transformer Neural Turing Machines) for diachronic graph embedding framework, which uses time series self-attention mechanism to capture the non-linearly evolving entity representations over time. We demonstrate significantly improved performance over various approaches. A series of benchmark experiments illustrate that TSA-TNTM could generate higher quality than the state-of-the-art word embedding models in tasks pertaining to semantic analogy, clustering, threat classification and proactively identify emerging threats in CTI fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)

  2. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  3. Cao, Z., Xu, Q., Yang, Z., Cao, X., Huang, Q.: Dual quaternion knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 6894–6902 (2021)

    Google Scholar 

  4. Chen, J., Wang, X., Xu, X.: GC-LSTM: graph convolution embedded LSTM for dynamic link prediction. arXiv preprint arXiv:1812.04206 (2018)

  5. Dasgupta, S.S., Ray, S.N., Talukdar, P.: HyTE: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)

    Google Scholar 

  6. García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. arXiv preprint arXiv:1809.03202 (2018)

  7. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3988–3995 (2020)

    Google Scholar 

  8. Graves, A., Wayne, G., Danihelka, I.: Neural turing machines. arXiv preprint arXiv:1410.5401 (2014)

  9. Han, Z., Ma, Y., Wang, Y., Günnemann, S., Tresp, V.: Graph Hawkes neural network for forecasting on temporal knowledge graphs. arXiv preprint arXiv:2003.13432 (2020)

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (volume 1: Long papers), pp. 687–696 (2015)

    Google Scholar 

  12. Jiang, T., et al.: Towards time-aware knowledge graph completion. In: Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pp. 1715–1724 (2016)

    Google Scholar 

  13. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inference over temporal knowledge graphs. arXiv preprint arXiv:1904.05530 (2019)

  14. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  15. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1269–1278 (2019)

    Google Scholar 

  16. Leblay, J., Chekol, M.W., Liu, X.: Towards temporal knowledge graph embeddings with arbitrary time precision. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 685–694 (2020)

    Google Scholar 

  17. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  18. Maheshwari, A., Goyal, A., Hanawal, M.K., Ramakrishnan, G.: DynGAN: generative adversarial networks for dynamic network embedding. In: Graph Representation Learning Workshop at NeurIPS (2019)

    Google Scholar 

  19. Manessi, F., Rozza, A., Manzo, M.: Dynamic graph convolutional networks. Pattern Recogn. 97, 107000 (2020)

    Article  Google Scholar 

  20. Nestor, M.: GitHub has been under a continuous DDoS attack in the last 72 hours (2015)

    Google Scholar 

  21. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: International Conference on Machine Learning, pp. 2014–2023. PMLR (2016)

    Google Scholar 

  22. NIST: National vulnerability database (2018). https://nvd.nist.gov/

  23. openTSDB: OpenTSDB. http://opentsdb.net/

  24. Pingle, A., Piplai, A., Mittal, S., Joshi, A., Holt, J., Zak, R.: Relext: relation extraction using deep learning approaches for cybersecurity knowledge graph improvement. In: Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pp. 879–886 (2019)

    Google Scholar 

  25. Rastogi, N., Dutta, S., Zaki, M.J., Gittens, A., Aggarwal, C.: MALOnt: an ontology for malware threat intelligence. In: Wang, G., Ciptadi, A., Ahmadzadeh, A. (eds.) MLHat 2020. CCIS, vol. 1271, pp. 28–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59621-7_2

    Chapter  Google Scholar 

  26. Samtani, S., Zhu, H., Chen, H.: Proactively identifying emerging hacker threats from the dark web: a diachronic graph embedding framework (D-GEF). ACM Trans. Priv. Secur. (TOPS) 23(4), 1–33 (2020)

    Article  Google Scholar 

  27. Sarhan, I., Spruit, M.: Open-CYKG: an open cyber threat intelligence knowledge graph. Knowl.-Based Syst. 233, 107524 (2021)

    Article  Google Scholar 

  28. Shu, X., et al.: Threat intelligence computing. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1883–1898 (2018)

    Google Scholar 

  29. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DyRep: learning representations over dynamic graphs. In: International Conference on Learning Representations (2019)

    Google Scholar 

  30. Trivedi, R., Farajtabar, M., Wang, Y., Dai, H., Zha, H., Song, L.: Know-evolve: deep reasoning in temporal knowledge graphs. arXiv preprint arXiv:1705.05742 (2017)

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  32. Wang, J., Song, G., Wu, Y., Wang, L.: Streaming graph neural networks via continual learning. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1515–1524 (2020)

    Google Scholar 

  33. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  34. Xu, C., Nayyeri, M., Alkhoury, F., Yazdi, H.S., Lehmann, J.: Temporal knowledge graph embedding model based on additive time series decomposition. arXiv preprint arXiv:1911.07893 (2019)

  35. Zaremba, W., Sutskever, I., Vinyals, O.: Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)

Download references

Acknowledgements

This research is supported by Key Laboratory of Network Assessment Technology, Chinese Academy of Sciences and Beijing Key Laboratory of Network Security and Protection Technology. We thank the anonymous reviewers for their insightful comments on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baoxu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, B., Chen, R., Liu, B., Jiang, Z., Wang, X. (2022). Time Series Attention Based Transformer Neural Turing Machines for Diachronic Graph Embedding in Cyber Threat Intelligence. In: Groen, D., de Mulatier, C., Paszynski, M., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2022. ICCS 2022. Lecture Notes in Computer Science, vol 13353. Springer, Cham. https://doi.org/10.1007/978-3-031-08760-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08760-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08759-2

  • Online ISBN: 978-3-031-08760-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics