Nothing Special   »   [go: up one dir, main page]

Skip to main content

Abstract

Future communications technologies will radically transform the way we communicate, by introducing a vast array of capabilities and services. In current 5G networks, key elements such as increased bandwidth, smaller cells, high density, multiple radio access technologies and device-to-device (D2D) communication can offer great benefit in localization services. Telecom operators and ICT companies have accepted the challenge to develop and integrate mobile localization technologies, powered by AI algorithms and machine-learning techniques, which will exploit the location information while, at the same time, preserve end-users’ privacy. The use of these technologies will enhance location-based communication and network management techniques as well as mobility and radio resource management. In this paper, we present the ambition coming from the framework of the LOCUS EU-funded project [1]. LOCUS aims to design and implement an innovative location management layered platform which will be able to improve localization accuracy, taking into consideration localization security and privacy concerns, to extend localization with physical analytics and finally to extract value out from the combined interaction of localization and analytics, while guaranteeing users’ privacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. LOCUS Project (Grant Agreement No.871249), https://www.locus-project.eu/

  2. Küpper, A.: Location-Based Services: Fundamentals and Operation. Wiley, Munich (2005)

    Book  Google Scholar 

  3. Koivisto, M., Hakkarainen, A., Costa, M., Kela, P., Leppanen, K., Valkama, M.: High-efficiency device positioning and location-aware communications in dense 5G networks. IEEE Commun. Mag. 55(8), 188–195 (2017)

    Article  Google Scholar 

  4. El Hattachi, R., Erfanian, J.: NGMN 5G White Paper. Next Generation Mobile Networks Alliance (2015). https://www.ngmn.org/work-programme/5g-white-paper.html

  5. Boccardi, F., Heath, R.W., Lozano, A., Marzetta, T.L., Popovski, P.: Five disruptive technology directions for 5G. IEEE Commun. Mag. 52(2), 74–80 (2014)

    Article  Google Scholar 

  6. The 3rd Generation Partnership Project (3GPP): LTE Release 11, https://www.3gpp.org/specifications/releases/69-release-11

  7. Slock, D.: Location aided wireless communications. In: Proceedings of the 2012 5th International Symposium on Communications Control and Signal Processing (ISCCSP), pp. 1–6. IEEE (2012)

    Google Scholar 

  8. Werner, J., Costa, M., Hakkarainen, A., Leppanen, K., Valkama, M.: Joint user node positioning and clock offset estimation in 5G ultra-dense networks. In: Proceedings of the 2015 IEEE Global Communications Conference (GLOBECOM), pp. 1–7. IEEE (2015)

    Google Scholar 

  9. European Telecommunications Standards Institute (ETSI): ETSI TS 124.502 V16.7.0: 5G; Access to the 3GPP 5G Core Network (5GCN) via non-3GPP access networks (3GPP TS 24.502 version 16.7.0 Release 16), (2021, April)

    Google Scholar 

  10. The 3rd Generation Partnership Project (3GPP): TR 21.916 V0.1.0: Release 16 Description; Summary of Rel-16 Work Items (release 16) (2019, September)

    Google Scholar 

  11. https://www.gps.gov/systems/gps/performance/accuracy/

  12. Worboys, M.F., Duckham, M.: GIS: A Computing Perspective, 2nd edn. CRC Press, Boca Raton, FL (2004)

    Book  Google Scholar 

  13. Di Taranto, R., Muppirisetty, S., Raulefs, R., Slock, D., Svensson, T., Wymeersch, H.: Location-aware communications for 5G networks: How location information can improve scalability, latency, and robustness of 5G. IEEE Signal Process. Mag. 31(6), 102–112 (2014)

    Article  Google Scholar 

  14. Liao, D., Li, H., Sun, G., Zhang, M., Chang, V.: Location and trajectory privacy preservation in 5G-enabled vehicle social network services. J. Netw. Comput. Appl. 110, 108–118 (2018)

    Article  Google Scholar 

  15. Chukhno, N., Trilles, S., Torres-Sospedra, S., Iera, A., Araniti, G.: D2D-Based cooperative positioning paradigm for future wireless systems: a survey. IEEE Sens. J. 22(6), 5101–5112 (2022)

    Article  Google Scholar 

  16. Wang, Z., Liu, Z., Shen, Y., Conti, A., Win, M.Z.: Location awareness in beyond 5G networks via reconfigurable intelligent surfaces. IEEE J. Sel. Areas Commun. (2022)

    Google Scholar 

  17. Blefari-Melazzi, N., et al.: LOCUS: Localization and analytics on-demand embedded in the 5G ecosystem. In: Proceedings of the 2020 European Conference on Networks and Communications (EuCNC), pp. 170–175 (2020)

    Google Scholar 

  18. The 3rd Generation Partnership Project (3GPP): Release 16. https://www.3gpp.org/release-16

  19. LOCUS Project: Deliverable 2.4: System architecture: Preliminary version (2020). https://www.locus-project.eu/results/deliverables/

  20. Mayer, G.: RESTful APIs for the 5G service based architecture. J. ICT Stand. 6(1), 101–116 (2018)

    Google Scholar 

  21. Tomasin, S., Centenaro, M., Seco-Granados, G., Roth, S., Sezgin, A.: Location-privacy leakage and integrated solutions for 5G cellular networks and beyond. Sensors 21(15), 5176 (2021)

    Article  Google Scholar 

  22. Fang, D., Qian, Y.: 5G wireless security and privacy: Architecture and flexible mechanisms. IEEE Veh. Technol. Mag. 15, 58–64 (2020)

    Article  Google Scholar 

  23. Schneier, B.: Inside risks: Semantic network attacks. Commun. ACM 43(12), 168 (2000)

    Article  Google Scholar 

  24. Kumar, G.V., Chigarapalle, S.B.: A study on access point selection algorithms in wireless mesh networks. Int. J. Adv. Netw. Appl. 6, 2158–2167 (2014)

    Google Scholar 

  25. Farhang, S., Hayel, Y., Zhu, Q.: PHY-layer location privacy-preserving access point selection mechanism in next-generation wireless networks. In: Proceedings of the 2015 IEEE Conference on Communications and Network Security (CNS), pp. 263–271. IEEE (2015)

    Google Scholar 

  26. Kumar, T., Liyanage, M., Ahmad, I., Braeken, A., Ylianttila, M.: User privacy, identity and trust in 5G. In: Liyanage, M., Ahmad, I., et al. (eds.) A Comprehensive Guide to 5G Security, pp. 267–279. Wiley, Hoboken (2018)

    Chapter  Google Scholar 

  27. Intersoft Consulting: Art.4 GDPR—Definitions. https://gdpr-info.eu/art-4-gdpr/

  28. Liyanage, M., Ahmad, I., Abro, A.B., Gurtov, A., Ylianttila, M.: A Comprehensive Guide to 5G Security. Wiley, Hoboken, NJ (2018)

    Google Scholar 

  29. Wang, T., Liu, L.: From data privacy to location privacy. In: Yu, P.S., Tsai, J.J.P. (eds.) Machine Learning in Cyber Trust, pp. 217–246. Springer, Berlin (2009)

    Chapter  Google Scholar 

  30. Bamba, B., Liu, L., Pesti, P., Wang, T.: PrivacyGrid: Supporting anonymous location queries in mobile environments. In: Proceedings of the 2008 International World Wide Web Conference (WWW), pp. 237–246. ACM (2008)

    Google Scholar 

  31. Yin, C., Xi, J., Sun, R., Wang, J.: Location privacy protection based on differential privacy strategy for big data in industrial Internet of Things. IEEE Trans. Industr. Inf. 14, 3628–3636 (2018)

    Article  Google Scholar 

  32. Li, F., Chen, Y., Niu, B., He, Y., Geng, K., Cao, J.: Achieving personalized k-anonymity against long-term observation in location-based services. In: Proceedings of the 2018 IEEE Global Communications Conference (GLOBECOM), pp. 1–6. IEEE (2018)

    Google Scholar 

  33. Beresford, A., Stajano, F.: Mix zones: User privacy in location-aware services. In: Proceedings of the Second 2004 IEEE Annual Conference on Pervasive Computing and Communications Workshops, pp. 127–131. IEEE (2004)

    Google Scholar 

Download references

Acknowledgments

This paper has been based on the context of the LOCUS (“LOCalization and analytics on-demand embedded in the 5G ecosystem, for Ubiquitous vertical applicationS”) Project, and has been supported by the Commission of the European Communities / H2020, Grant Agreement No.871249.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Belesioti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belesioti, M., Tsagkaris, K., Margaris, A., Chochliouros, I.P. (2022). A 5G-Based Architecture for Localization Accuracy. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022 IFIP WG 12.5 International Workshops. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 652. Springer, Cham. https://doi.org/10.1007/978-3-031-08341-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08341-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08340-2

  • Online ISBN: 978-3-031-08341-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics