Abstract
COVID-19 has caused a global health crisis that has infected millions of people across the globe. Currently, the fourth wave of COVID-19 is about to be declared as Omicron. The new variant of COVID-19 has caused an unprecedented increase in cases. According to World Health Organization, safety measures must be adopted in public places to prevent the spread of the virus. One effective safety measure is to wear face masks in crowded places. To create a safe environment, government agencies adopt strict rules to ensure adherence to safety measures. However, it is difficult to manually analyze the crowded scenes and identify people violating the safety measures. This paper proposed an automated approach based on a deep learning framework that automatically analyses the complex scenes and identifies people with face masks or without facemasks. The proposed framework consists of two sequential parts. In the first part, we generate scale aware proposal to cover scale variations, and in the second part, the framework classifies each proposal. We evaluate the performance of the proposed framework on a challenging benchmark data set. We demonstrate that the proposed framework achieves high performance and outperforms other reference methods by a considerable margin from experimental results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Khan, S.D., Altamimi, A.B., Ullah, M., Ullah, H., Cheikh, P.A.: TCM: temporal consistency model for head detection in complex videos. J. Sensor. 2020 (2020)
Ullah, M., Ullah, H., Alseadonn, I.M.: Human action recognition in videos using stable features (2017)
Ullah, M., Kedir, M.A., Cheikh, F.A.: Hand-crafted vs deep features: a quantitative study of pedestrian appearance model. In: 2018 Colour and Visual Computing Symposium (CVCS), pp. 1–6. IEEE (2018)
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26
Kuo, W., Hariharan, B., Malik, J.: Deepbox: learning objectness with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2479–2487 (2015)
Ghodrati, A., Diba, A., Pedersoli, M., Tuytelaars, T., Van Gool, L.: Deepproposal: Hunting objects by cascading deep convolutional layers. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2578–2586 (2015)
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot MultiBox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)
Perez, L., Wang, J.: The effectiveness of data augmentation in image classification using deep learning. arXiv preprint arXiv:1712.04621 (2017)
Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, pp. 249–256. JMLR Workshop and Conference Proceedings (2010)
Garipov, T., Izmailov, P., Podoprikhin, O., Vetrov, O., Wilson, A.G.: Loss surfaces, mode connectivity, and fast ensembling of DNNs. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 8803–8812 (2018)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol.1, pp. I–I. IEEE (2001)
Ren, X.: Finding people in archive films through tracking. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)
Felzenszwalb, P.F., Girshick, R.S., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627–1645 (2009)
Yang, B., Yan, J., Lei, Z., Li, Z.:Aggregate channel features for multi-view face detection. In: IEEE International Joint Conference on Biometrics, pp. 1–8. IEEE (2014)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53
Krizhevsky, A., Sutskever, B., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Adv. Neural Inf. Processing Systems, 25, 1097–1105 (2012)
Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)
Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 IFIP International Federation for Information Processing
About this paper
Cite this paper
Khan, S.D. et al. (2022). An Efficient Deep Learning Framework for Face Mask Detection in Complex Scenes. In: Maglogiannis, I., Iliadis, L., Macintyre, J., Cortez, P. (eds) Artificial Intelligence Applications and Innovations. AIAI 2022. IFIP Advances in Information and Communication Technology, vol 646. Springer, Cham. https://doi.org/10.1007/978-3-031-08333-4_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-08333-4_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08332-7
Online ISBN: 978-3-031-08333-4
eBook Packages: Computer ScienceComputer Science (R0)