Nothing Special   »   [go: up one dir, main page]

Skip to main content

Homomorphic Evaluation of Lightweight Cipher Boolean Circuits

  • Conference paper
  • First Online:
Foundations and Practice of Security (FPS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13291))

Included in the following conference series:

Abstract

Motivated by a number of applications of lightweight ciphers in privacy-enhancing cryptography (PEC) techniques such as secure multiparty computation (SMPC), fully homomorphic encryption (FHE) and zero-knowledge proof (ZKP) for verifiable computing, we investigate the Boolean circuit complexity of the core primitives of NIST lightweight cryptography (LWC) round 2 candidates. In PEC, the functionalities (e.g., ciphers) are often required to express as Boolean or arithmetic circuits before applying PEC techniques, and the size of a circuit is one of the efficiency factors. As a use case, we consider homomorphic evaluation of the core AEAD circuits in the cloud-outsourcing setting using the TFHE scheme, and present the performance results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bristol fashion MPC circuits. https://homes.esat.kuleuven.be/~nsmart/MPC/old-circuits.html

  2. Albrecht, M., et al.: Homomorphic encryption security standard. Technical report, HomomorphicEncryption.org, Toronto, Canada (2018)

    Google Scholar 

  3. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

  4. Albrecht, M.R., et al.: Feistel structures for MPC, and more. In: Sako, K., Schneider, S., Ryan, P.Y.A. (eds.) ESORICS 2019. LNCS, vol. 11736, pp. 151–171. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29962-0_8

  5. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

  6. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. Cryptology ePrint Archive, Report 2019/426 (2019). https://eprint.iacr.org/2019/426

  7. Ashur, T., Dhooghe, S.: Marvellous: a stark-friendly family of cryptographic primitives. Cryptology ePrint Archive, Report 2018/1098 (2018). https://eprint.iacr.org/2018/1098

  8. Bassham, L., Calik, C., Chang, D., Kang, J., McKay, K., Turan, M.S.: Lightweight cryptography (2019). https://csrc.nist.gov/projects/lightweight-cryptography

  9. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The simon and speck lightweight block ciphers. In: Proceedings of the 52nd Annual Design Automation Conference. DAC 2015, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2744769.2747946

  10. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

  11. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and Robustness. https://competitions.cr.yp.to/caesar.html

  12. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. J. Cryptol. 31(3), 885–916 (2018)

    Google Scholar 

  13. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Faster fully homomorphic encryption: bootstrapping in less than 0.1 seconds. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 3–33. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_1

  14. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: TFHE: fast fully homomorphic encryption library (2016). https://tfhe.github.io/tfhe/

  15. Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33(1), 167–226 (2003)

    Article  MathSciNet  Google Scholar 

  16. Damgård, I., Keller, M.: Secure multiparty AES. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 367–374. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14577-3_31

  17. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and Few ANDs per bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22

  18. eSTREAM: the ecrypt stream cipher project. http://www.ecrypt.eu.org/stream/

  19. Franz, M., Holzer, A., Katzenbeisser, S., Schallhart, C., Veith, H.: CBMC-GC: an ANSI C compiler for secure two-party computations. In: Cohen, A. (ed.) Compiler Construction, pp. 244–249. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54807-9_15

  20. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the forty-first annual ACM symposium on Theory of computing, pp. 169–178 (2009)

    Google Scholar 

  21. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_49

  22. Grassi, L., Khovratovich, D., Rechberger, C., Roy, A., Schofnegger, M.: Poseidon: a new hash function for zero-knowledge proof systems. In: 30th USENIX Security Symposium (USENIX Security 21), pp. 519–535. USENIX Association (2021). https://www.usenix.org/conference/usenixsecurity21/presentation/grassi

  23. Grassi, L., Rechberger, C., Rotaru, D., Scholl, P., Smart, N.P.: MPC-friendly symmetric key primitives. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 430–443. CCS 16, Association for Computing Machinery, New York, NY, USA (2016). https://doi.org/10.1145/2976749.2978332

  24. Housley, R.: Using chacha20-poly1305 authenticated encryption in the cryptographic message syntax (CMS). Technical report, RFC 8103 (2017)

    Google Scholar 

  25. Kamara, S., Mohassel, P., Riva, B.: Salus: a system for server-aided secure function evaluation. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security, pp. 797–808. CCS 2012, Association for Computing Machinery, New York, NY, USA (2012). https://doi.org/10.1145/2382196.2382280

  26. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster secure multi-party computation of AES and DES using lookup tables. In: Gollmann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 2017. LNCS, vol. 10355, pp. 229–249. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61204-1_12

  27. Kosba, A., Miller, A., Shi, E., Wen, Z., Papamanthou, C.: Hawk: the blockchain model of cryptography and privacy-preserving smart contracts. In: 2016 IEEE Symposium on Security and Privacy (SP), pp. 839–858 (2016)

    Google Scholar 

  28. Laur, S., Talviste, R., Willemson, J.: From oblivious AES to efficient and secure database join in the multiparty setting. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 84–101. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_6

  29. Lepoint, T., Naehrig, M.: A comparison of the homomorphic encryption schemes FV and YASHE. In: Pointcheval, D., Vergnaud, D. (eds.) AFRICACRYPT 2014. LNCS, vol. 8469, pp. 318–335. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06734-6_20

  30. Lindell, Y., Riva, B.: Blazing fast 2pc in the offline/online setting with security for malicious adversaries. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, p. 579?590. CCS 2015, Association for Computing Machinery, New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813666

  31. Mandal, K.: Boolean circuits for ae cores of NIST lightweight ciphers (2020). https://www.cs.unb.ca/~kmandal/nistlwc/lwc_circuit.html

  32. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_13

  33. Nicolas T. Courtois, D.H., Mourouzis, T.: Solving circuit optimisation problems in cryptography and cryptanalysis. Cryptology ePrint Archive, Report 2011/475 (2011). https://ia.cr/2011/475

  34. Pinkas, B., Schneider, T., Smart, N.P., Williams, S.C.: Secure two-party computation is practical. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 250–267. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_15

  35. Rotaru, D., Smart, N.P., Stam, M.: Modes of operation suitable for computing on encrypted data. IACR Trans. Symm. Cryptol. 2017(3), 294–324 (2017). https://doi.org/10.13154/tosc.v2017.i3.294-324, https://tosc.iacr.org/index.php/ToSC/article/view/775

  36. Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy, pp. 459–474 (2014)

    Google Scholar 

  37. Standards, I.: Information security - lightweight cryptography - part 2: Block ciphers (2019). https://www.iso.org/standard/78477.html

  38. Tillich, S., Smart, N.: AES circuit. https://homes.esat.kuleuven.be/~nsmart/MPC/AES-non-expanded.txt

Download references

Acknowledgement

The work of Kalikinkar Mandal was supported by the NBIF TRF202-010 award. The research of Guang Gong was supported by NSERC SPG and Discovery Grants. The authors would like to thank the reviewers for their insightful comments to improve the quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalikinkar Mandal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mandal, K., Gong, G. (2022). Homomorphic Evaluation of Lightweight Cipher Boolean Circuits. In: Aïmeur, E., Laurent, M., Yaich, R., Dupont, B., Garcia-Alfaro, J. (eds) Foundations and Practice of Security. FPS 2021. Lecture Notes in Computer Science, vol 13291. Springer, Cham. https://doi.org/10.1007/978-3-031-08147-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08147-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08146-0

  • Online ISBN: 978-3-031-08147-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics