Nothing Special   »   [go: up one dir, main page]

Skip to main content

Technologies for the Development of Polymeric Sensors

  • Conference paper
  • First Online:
Sensors and Microsystems (AISEM 2021)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 918))

Included in the following conference series:

  • 623 Accesses

Abstract

In recent years, the interest of the scientific community towards new technologies for sensor fabrication has grown, in particular with regards to the possibility of creating flexible and low-cost sensors, devices and electronic circuits, motivated by the need to increasingly reduce development times and costs manufacturing of sensors and electronic devices.

The ever-widening diffusion of applications that use wearable, disposable and low-cost devices has raised also the needing of producing sensors based on sustainable production technologies, possibly recyclable and, anyway, with a low environmental impact, after their useful life.

The research team at the SensorLab@DIEEI of the University of Catania, Italy, has been involved, since decades, in research activities on new technologies, such as Inkjet printing and Micromilling for the rapid prototyping of sensors, silicon-based MEMS, flexible polymeric sensors and Biopolymer-based sensors.

In this paper, the technologies are introduced and a set of meaningful examples are briefly described. In particular, for the sake of comparison, the selected examples are in all the cases accelerometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pham, D., Dimov, S.: Rapid prototyping and rapid tooling– the key enablers for rapid manufacturing. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 217(1), 1–23 (2003)

    Article  Google Scholar 

  2. Andò, B., Baglio, S., Bulsara, et al.: Low-cost inkjet printing technology for the rapid prototyping of transducers. Sensors 17(4), 748 (2017)

    Google Scholar 

  3. Khan, S., Lorenzelli, L., Dahiya, R.S.: Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15(6), 3164–3185 (2015)

    Article  Google Scholar 

  4. FUJIFILM Dimatix, Inc. http://www.dimatix.com. Accessed 10 June 2021

  5. Microdrop Technologies GmbH. http://www.microdrop.de. Accessed 10 June 2021

  6. Al-Halhouli, A., et al.: Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sensor Rev. 38(4), 438–452 (2018)

    Article  Google Scholar 

  7. Andò, B., Baglio, S., Di Pasquale, G., et al.: An inkjet printed CO2 gas sensor. Procedia Eng. 120, 628–631 (2015)

    Article  Google Scholar 

  8. Câmara, M.A., Campos Rubio, J.C., Abrão, A.M., et al.: State of the art on micromilling of materials, a review. J. Mater. Sci. Technol. 28(8), 673–685 (2012)

    Article  Google Scholar 

  9. Guckenberger, D.J., Groot , T.E.d., Wan, A.M.D., et al.: Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices, Lab Chip. 15, 2364–2378 (2015)

    Google Scholar 

  10. Chen, P.-C., Pan, C.-W., Lee, W.-C., Li, K.-M.: An experimental study of micromilling parameters to manufacture microchannels on a PMMA substrate. Int. J. Adv. Manuf. Technol. 71(9–12), 1623–1630 (2014). https://doi.org/10.1007/s00170-013-5555-z

    Article  Google Scholar 

  11. Tadigadapa, S., Mateti, K.: Piezoelectric MEMS sensors: state-of-the-art and perspectives. Meas. Sci. Technol. 20(9), 092001 (2009)

    Article  Google Scholar 

  12. Bell, D.J., Lu, T.J., Fleck, N.A., Spearing, S.M.: MEMS actuators and sensors: observations on their performance and selection for purpose. J. Micromech. Microeng. 15(7), S153 (2005)

    Article  Google Scholar 

  13. Tanaka, M.: An industrial and applied review of new MEMS devices features. Microelectron. Eng. 84(5–8), 1341–1344 (2007)

    Article  Google Scholar 

  14. Bogue, R.: Recent developments in MEMS sensors: a review of applications, markets and technologies. Sensor Rev. 33 (2013)

    Google Scholar 

  15. Ionic Polymer Metal Composites (IPMCs): Smart Multi-Functional Materials and Artificial Muscles, Shahinpoor M edt RSC Smart Materials V 1-2 (2016)

    Google Scholar 

  16. Lee, S., et al: Silk and paper: progress and prospects in green photonics and electronics Adv. Sust. Sys. 6 (2020)

    Google Scholar 

  17. Caponetto, R., et al.: A generating all-polymeric touching sensing system. IEEE Trans. Instr. Meas. 69(7) (2020)

    Google Scholar 

  18. Tang, Y., et al.: Ionic polymer–metal composite actuator based on sulfonated poly(ether ether ketone) with different degrees of sulfonation. Sens. Act. A Phys. 238, 167–176 (2016)

    Article  Google Scholar 

  19. He, Q., et al.: Mechanoelectric transduction of ionic polymer-graphene composite sensor with ionic liquid as electrolyte. Sens. Act. A Phys. 286, 68–77 (2019)

    Article  Google Scholar 

  20. Zhao, D., et al.: Cellulose-based flexible functional materials for emerging intelligent electronics. Adv. Mat. 33 (2020)

    Google Scholar 

  21. Ummartyotin, S., Manuspiya, H.: A critical review on cellulose: from fundamental to an approach on sensor technology. Ren. Sust. Ener. Rev. 41, 402–412 (2015)

    Article  Google Scholar 

  22. Ding, L., et al.: A naked-eye detection polyvinyl alcohol/cellulose-based pH sensor for intelligent packaging. Carb. Pol. 233, 115859 (2020)

    Google Scholar 

  23. Iguchi, M., et al.: Bacterial cellulose - a masterpiece of nature's arts. J. Mat. Sci. 35(2) 261–270 (2000)

    Google Scholar 

  24. Mangayil, R., et al.: Characterization of a novel bacterial cellulose producer for the production of eco-friendly piezoelectric-responsive films from a minimal medium containing waste carbon. Cellulose 28(2), 1–19 (2020)

    Google Scholar 

  25. Yuen, J.D., et al.: Microbial nanocellulose printed circuit boards for medical sensing. Sensors 20(7), 2047 (2020)

    Google Scholar 

  26. Kim, S.-S., et al.: Electro-active hybrid actuators based on freeze-dried bacterial cellulose and PEDOT: PSS. Smart. Mat. Struct. 22(8) 085026 (2013)

    Google Scholar 

  27. Hosseini, H., et al.: Conductive bacterial cellulose/multiwall carbon nanotubes nanocomposite aerogel as a potentially flexible lightweight strain sensor. Carbohydr. Pol. 201, 228–235 (2018)

    Article  Google Scholar 

  28. Wang, Y.-H., et al.: A paper-based piezoelectric accelerometer. Micromachines 9(1), 19 (2018)

    Google Scholar 

  29. Di Pasquale, G., et al.: Performance characterization of a biodegradable deformation sensor based on bacterial cellulose. IEEE Trans. Instr. Meas. 69(5), 2561–2569 (2020)

    Google Scholar 

  30. Andò, B., Baglio, S.: All-Inkjet printed strain sensors. IEEE Sens. J. 13(12), 4874–4879 (2013)

    Article  Google Scholar 

  31. Andò, B., Baglio, S., Lombardo, C.O., et al.: A low-cost accelerometer developed by inkjet printing technology. IEEE Trans. Instrum. Measur. 65(5), 1242–1248 (2016)

    Google Scholar 

  32. Chua, C.K., Leong, K.F., Lim, C.S.: Rapid Prototyping: Principles and Applications, 2nd edn. World Scientific Publishing Co. Pte. Ltd. (2003)

    Google Scholar 

  33. Kempe, V.: Inertial MEMS: Principles and Practice. Cambridge University Press (2011)

    Book  Google Scholar 

  34. Varadan, V.K., Varadan, V.V.: Microsensors, microelectromechanical systems (MEMS), and electronics for smart structures and systems. Smart Mater. Struct. 9(6), 953 (2000)

    Article  Google Scholar 

  35. Abdellatif, S., Mezghani, B., Mailly, F., Nouet, P.: Optimal detector position and structure for a new 3-axis CMOS thermal microaccelerometer. In: 2020 17th International Multi-Conference on Systems, Signals & Devices (SSD), pp. 1144–1149. IEEE, July 2020

    Google Scholar 

  36. Trigona, C., Ando, B., Baglio, S.: Design, fabrication, and characterization of BESOI-accelerometer exploiting photonic bandgap materials. IEEE Trans. Instrum. Meas. 63(3), 702–710 (2014)

    Article  Google Scholar 

  37. Sinatra, V., Trigona, C., Andò, B., Baglio, S.: Self-generating microsensor with meander architecture for performance enhancement in inertial systems. In: 2019 IEEE International Symposium on Measurements & Networking (M&N), pp. 1–5. IEEE, July 2019

    Google Scholar 

  38. http://memscap.com/__data/assets/pdf_file/0020/5915/PiezoMUMPs.DR.1.3a.pdf

  39. Di Pasquale, G., Graziani, S., Pollicino, A., Trigona, C.: Green inertial sensors based on bacterial cellulose. In: SAS 2019 - 2019 IEEE Sensors Applications Symposium, Conference Proceedings (2019)

    Google Scholar 

  40. Di Pasquale, G., Graziani, S., Licciulli, A., Nisi, R., Pollicino, A., Trigona, C.: Geometrical and thermal influences on a bacterial cellulose-based sensing element for acceleration measurements. Acta IMEKO 9(4), 151–156 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Andò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andò, B., Baglio, S., Castorina, S., Graziani, S., Trigona, C. (2023). Technologies for the Development of Polymeric Sensors. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_50

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-08136-1_50

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-08135-4

  • Online ISBN: 978-3-031-08136-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics