Abstract
We present a feasibility study on biological tissue and cell manipulation by a novel, multi-hinge microgripper characterized by high dexterity and complex in-plane tips displacement, while being at the same time highly compact and easy to manufacture via MEMS technology. The device was obtained by combining selective flexibility with planar fabrication technology and has been developed to propose new solutions for miniaturized, inexpensive, energy-efficient, effective and accurate manipulation at the micro-scale. The presented study consists of a direct morphological comparison with real-life cardiac and lung tissue samples, and was accomplished via in-vitro microscope observation. The results highlight the function capability of manipulating, grasping and clamping objects having a size of 50 to 150 µm, including muscle fibers, blood vessels and cells, encouraging further developments toward an in-vivo scenario with actual biological material.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, W., Zhao, Y., Lin, Q.: An integrated MEMS tactile tri-axial micro-force probe sensor for minimally invasive surgery. In: IEEE 3rd International Conference on Nano/Molecular Medicine and Engineering, pp. 71–76. IEEE (2009)
Inoue, K., Arai, T., Tanikawa, T., Ohba, K.: Dexterous micromanipulation supporting cell and tissue engineering. In: IEEE International Symposium on Micro-NanoMechatronics and Human Science, pp. 197–202. IEEE (2005)
Buzzin, A., et al.: Integrated 3D microfluidic device for impedance spectroscopy in lab-on-chip systems. In: 2019 IEEE 8th International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 224–227. IEEE (2019)
Bashir, R.: BioMEMS: state-of-the-art in detection, opportunities and prospects. Adv. Drug Deliv. Rev. 56(11), 1565–1586 (2004)
Buzzin, A., Veroli, A., de Cesare, G., Belfiore, N.P.: NEMS-technology based nano gripper for mechanic manipulation in space exploration mission. Adv. Astro. Sci. 163, 61–67 (2018)
Kim, K., Liu, X., Zhang, Y., Sun, Y.: Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback. J. Micromech. Microeng. 18(5), 055013 (2008)
Wiklund, M., et al.: Ultrasound-induced cell-cell interaction studies in a multi-well microplate. Micromachines 5(1), 27–49 (2014)
Norregaard, K., Jauffred, L., Berg-Sørensen, K., Oddershede, L.B.: Optical manipulation of single molecules in the living cell. Phys. Chem. Chem. Phys. 16(25), 12614–12624 (2014)
Rebello, K.J.: Applications of MEMS in surgery. IEEE Proc. 92(1), 43–55 (2004)
Wierzbicki, R., et al.: Design and fabrication of an electrostatically driven microgripper for blood vessel manipulation. Microelectron. Eng. 83(4–9), 1651–1654 (2006)
Verotti, M., Dochshanov, A., Belfiore, N.P.: Compliance synthesis of CSFH MEMS-based microgrippers. J. Mech. Des. 139(2) (2017)
Bagolini, A., Ronchin, S., Bellutti, P., Chistè, M., Verotti, M., Belfiore, N.P.: Fabrication of novel MEMS microgrippers by deep reactive ion etching with metal hard mask. J. Microelectromech. Syst. 26(4), 926–934 (2017)
Veroli, A., Buzzin, A., Frezza, F., De Cesare, G., Giovine, E., Belfiore, N.P.: An approach to the extreme miniaturization of rotary comb drives. Actuators 7(1), 70 (2018)
Buzzin, A., Cupo, S., Giovine, E., de Cesare, G., Belfiore, N.P.: Compliant nano-pliers as a biomedical tool at the nanoscale: design, simulation and fabrication. Micromachines 11(12), 1087 (2020)
Buzzin, A., Veroli, A., de Cesare, G., Giovine, E., Verotti, M., Belfiore, N.P.: A new NEMS based linear-to-rotary displacement-capacity transducer. In: IEEE International Workshop on Advances in Sensors and Interfaces (IWASI), pp. 201–204. IEEE (2019)
Veroli, A., et al.: Development of a NEMS-technology based nano gripper. In: Ferraresi, C., Quaglia, G. (eds.) RAAD 2017. MMS, vol. 49, pp. 601–611. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61276-8_63
Luisetto, I., et al.: An interdisciplinary approach to the nanomanipulation of SiO2 nanoparticles: design fabrication and feasibility. Appl. Sci. 8(12), 2645 (2018)
Cecchi, R., et al.: Development of micro-grippers for tissue and cell manipulation with direct morphological comparison. Micromachines 6(11), 1710–1728 (2015)
Vurchio, F., et al.: Grasping and releasing agarose micro beads in water drops. Micromachines 10(7), 436 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Buzzin, A. et al. (2023). Compliant Microgripper for In-Vitro Biological Manipulation. In: Di Francia, G., Di Natale, C. (eds) Sensors and Microsystems. AISEM 2021. Lecture Notes in Electrical Engineering, vol 918. Springer, Cham. https://doi.org/10.1007/978-3-031-08136-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-08136-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-08135-4
Online ISBN: 978-3-031-08136-1
eBook Packages: EngineeringEngineering (R0)