Nothing Special   »   [go: up one dir, main page]

Skip to main content

Increasing the Accuracy of Optipharm’s Virtual Screening Predictions by Implementing Molecular Flexibility

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Abstract

Recently, a new piece of software called OptiPharm has been proposed to optimize the similarity between two given molecules. A comprehensive study proved it was very competitive compared with state-of-the-art algorithms such as WEGA and ROCS. However, all of these methods, including OptiPharm, assume the proteins as rigid, resulting in poor or inefficient predictions. The consideration of conformational changes and thus the molecule’s flexibility is necessary. In this work, we have extended the OptiPharm’s functionality by applying a methodology that considers the flexibility of the molecules. Apart from that, the new OptiPharm presents some strengths regarding its previous version. More precisely, it reduces the search space dimension and introduces circular limits for the angular variables to enhance searchability. As results will show, these improvements help OptiPharm to achieve better predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ain, Q.U., Aleksandrova, A., Roessler, F.D., Ballester, P.J.: Machine-learning scoring functions to improve structure-based binding affinity prediction and virtual screening. Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(6), 405–424 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Axenopoulos, A., Rafailidis, D., Papadopoulos, G., Houstis, E.N., Daras, P.: Similarity search of flexible 3D molecules combining local and global shape descriptors. IEEE/ACM Trans. Comput. Biol. Bioinf. 13(5), 954–970 (2016)

    Article  Google Scholar 

  3. Cano-Muñoz, M., Jurado, S., Morel, B., Conejero-Lara, F.: Conformational flexibility of the conserved hydrophobic pocket of HIV-1 gp41. Implications for the discovery of small-molecule fusion inhibitors. Int. J. Biol. Macromol. 192, 90–99 (2021)

    Google Scholar 

  4. Carlson, H.A.: Protein flexibility and drug design: how to hit a moving target. Curr. Opin. Chem. Biol. 6(4), 447–452 (2002)

    Article  CAS  PubMed  Google Scholar 

  5. Debnath, S., Debnath, T., Majumdar, S., Arunasree, M.K., Aparna, V.: A combined pharmacophore modeling, 3D QSAR, virtual screening, molecular docking, and ADME studies to identify potential HDAC8 inhibitors. Med. Chem. Res. 25(11), 2434–2450 (2016). https://doi.org/10.1007/s00044-016-1652-5

    Article  CAS  Google Scholar 

  6. Ganesan, A., Coote, M.L., Barakat, K.: Molecular dynamics-driven drug discovery: leaping forward with confidence. Drug Discov. Today 22(2), 249–269 (2017)

    Article  CAS  PubMed  Google Scholar 

  7. Ge, H., Wang, Y., Zhao, W., Lin, W., Yan, X., Xu, J.: Scaffold hopping of potential anti-tumor agents by WEGA: a shape-based approach. Med. Chem. Commun. 5(6), 737–741 (2014)

    Article  CAS  Google Scholar 

  8. Han, R., Zhang, F., Wan, X., Fernández, J.J., Sun, F., Liu, Z.: A marker-free automatic alignment method based on scale-invariant features. J. Struct. Biol. 186(1), 167–180 (2014)

    Article  PubMed  Google Scholar 

  9. Hu, J., Liu, Z., Yu, D.J., Zhang, Y.: LS-align: an atom-level, flexible ligand structural alignment algorithm for high-throughput virtual screening. In: Bioinformatics, vol. 34, pp. 2209–2218. Oxford University Press (2018)

    Google Scholar 

  10. Kalászi, A., Szisz, D., Imre, G., Polgár, T.: Screen3D: a novel fully flexible high-throughput shape-similarity search method. J. Chem. Inf. Model. 54(4), 1036–1049 (2014)

    Article  PubMed  Google Scholar 

  11. Leelananda, S.P., Lindert, S.: Computational methods in drug discovery. Beilstein J. Org. Chem. 12, 2694–2718 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lipinski, C.A.: Rule of five in 2015 and beyond: target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev. 101, 34–41 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. OMEGA 4.1.0.2: OpenEye Scientific Software: Santa Fe, NM, USA (2019). http://www.eyesopen.com

  14. Puertas-Martín, S., Redondo, J.L., Ortigosa, P.M., Pérez-Sánchez, H.: OptiPharm: an evolutionary algorithm to compare shape similarity. Sci. Rep. 9(1), 1398 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  15. ROCS: OpenEye Scientific Software: Santa Fe, NM. http://www.eyesopen.com

  16. Rogers, D.J., Tanimoto, T.T.: A computer program for classifying plants. Science 132(3434), 1115–1118 (1960)

    Article  CAS  PubMed  Google Scholar 

  17. Seidel, T., Bryant, S.D., Ibis, G., Poli, G., Langer, T.: 3D pharmacophore modeling techniques in computer-aided molecular design using LigandScout. Wiley (2017)

    Google Scholar 

  18. Selvaraj, C., et al.: Microsecond MD simulation and multiple-conformation virtual screening to identify potential anti-COVID-19 inhibitors against SARS-CoV-2 main protease. Front. Chem. 8, 1–15, 595273 (2021). https://doi.org/10.3389/fchem.2020.595273

  19. Tversky, A.: Features of similarity. Psychol. Rev. 84(4), 327 (1977)

    Article  Google Scholar 

  20. Yan, X., Li, J., Liu, Z., Zheng, M., Ge, H., Xu, J.: Enhancing molecular shape comparison by weighted gaussian functions. J. Chem. Inf. Model. 53(8), 1967–1978 (2013)

    Article  CAS  PubMed  Google Scholar 

  21. Yan, X., Liao, C., Liu, Z., Hagler, A.T., Gu, Q., Xu, J.: Chemical structure similarity search for ligand-based virtual screening: methods and computational resources. Curr. Drug Targets 17(14), 1580–1585 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. Yuriev, E., Ramsland, P.A.: Latest developments in molecular docking: 2010–2011 in review. J. Mol. Recogn. 26(5), 215–239 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish Ministry of Economy and Competitiveness through the CTQ2017-87974-R, RTI2018-095993-B-I00 and EQC2019-006418-P grants; by the Junta de Andalucía through the grant Proyectos de excelencia (P18-RT-1193), by the Programa Regional de Fomento de la Investigación (Plan de Actuación 2018, Región de Murcia, Spain) through the: ”Ayudas a la realización de proyectos para el desarrollo de investigación científica y técnica por grupos competitivos (20988/PI/18)” grant; by the University of Almeria throught the grant: Ayudas a proyectos de investigación I+D+I en el marco del Programa Operativo FEDER 2014-20” (UAL18-TIC-A020-B). Savíns Puertas Martín is a fellow of the ‘Margarita Salas’ grant (RR_A_2021_21), financed by the European Union (NextGenerationEU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savíns Puertas-Martín .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Puertas-Martín, S., Redondo, J.L., Garzón, E.M., Pérez-Sánchez, H., Ortigosa, P.M. (2022). Increasing the Accuracy of Optipharm’s Virtual Screening Predictions by Implementing Molecular Flexibility. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13347. Springer, Cham. https://doi.org/10.1007/978-3-031-07802-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07802-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07801-9

  • Online ISBN: 978-3-031-07802-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics