Abstract
In this study, we propose a scheme to delimit benign and malignant masses in breast ultrasound images. It consists of two stages: superpixels extraction by an Intuitionistic Fuzzy algorithm, which considers the local information of the image to develop a local segmentation; and clustering the superpixels by means of DBSCAN algorithm. The proposal does not require preprocessing of noise reduction inherent to this type of medical images or enhancement of features. The effectiveness of our proposal is verified by quantitative and qualitative results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahn, E., Feng, D., Kim, J.: A spatial guided self-supervised clustering network for medical image segmentation (2021)
Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)
Byra, M., et al.: Joint segmentation and classification of breast masses based on ultrasound radio-frequency data and convolutional neural networks. Ultrasonics, 106682 (2022)
Chen, H., et al.: Segmentation of lymph nodes in ultrasound images using u-net convolutional neural networks and Gabor-based anisotropic diffusion. J. Med. Biol. Eng. 41(6), 942–952 (2021)
Elawady, M., Sadek, I., Shabayek, A.E.R., Pons, G., Ganau, S.: Automatic nonlinear filtering and segmentation for breast ultrasound images. In: Campilho, A., Karray, F. (eds.) Image Analysis and Recognition, pp. 206–213. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-41501-7_24
Fayed, L., Seong, J.: Differences between a malignant and benign tumor. verywellhealth.com (2020)
Gökcen, A., Kalyoncu, C.: Real-time impulse noise removal. J. Real-Time Image Process. 17(3), 459–469 (2018). https://doi.org/10.1007/s11554-018-0791-y
Joshi, A., Khan, M.S., Niaz, A., Akram, F., Song, H.C., Choi, K.N.: Active contour model with adaptive weighted function for robust image segmentation under biased conditions. Expert Syst. App. 175, 114811 (2021)
Karthik, B., Krishna Kumar, T., Vijayaragavan, S.P., Sriram, M.: Removal of high density salt and pepper noise in color image through modified cascaded filter. J. Amb. Intell. Human. Comput. 12(3), 3901–3908 (2020). https://doi.org/10.1007/s12652-020-01737-1
Magny, S.J., Shikhman, R., Keppke, A.L.: Breast imaging reporting and data system. StatPearls [Internet] (2021)
Mao, Y.M., Mwakapesa, D.S., Li, Y., Xu, K., Nanehkaran, Y.A., Zhang, M.: Assessment of landslide susceptibility using DBSCAN-AHD and LD-EV methods. J. Mount. Sci. 19(1), 184–197 (2022)
Meenalochini, G., Ramkumar, S.: Survey of machine learning algorithms for breast cancer detection using mammogram images. Mater. Today Proc. 37, 2738–2743 (2021)
Militello, C.: Semi-automated and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering. Biomed. Signal Process. Control 71, 103113 (2022)
Mújica-Vargas, D.: Superpixels extraction by an intuitionistic fuzzy clustering algorithm. J. Appl. Res. Technol. 19(2), 140–152 (2021)
Patra, D.K., Si, T., Mondal, S., Mukherjee, P.: Breast DCE-MRI segmentation for lesion detection by multi-level thresholding using student psychological based optimization. Biomed. Signal Process. Control 69, 102925 (2021)
Rodríguez-Cristerna, A., Gómez-Flores, W., de Albuquerque-Pereira, W.C.: BUSAT: a MATLAB Toolbox for breast ultrasound image analysis. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2017. LNCS, vol. 10267, pp. 268–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59226-8_26
Song, J., Zhang, Z.: A modified robust FCM model with spatial constraints for brain MR image segmentation. Information 10(2), 74 (2019). https://doi.org/10.3390/info10020074
Vakanski, A., Xian, M., Freer, P.E.: Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med. Biol. 46(10), 2819–2833 (2020)
Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., Carson, P.L.: Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91, 1–9 (2019)
Zhang, Y., Liu, M., He, J., Pan, F., Guo, Y.: Affinity fusion graph-based framework for natural image segmentation. IEEE Trans. Multimed. (2021)
Zhu, Q., Tang, X., Elahi, A.: Application of the novel harmony search optimization algorithm for DBSCAN clustering. Expert Syst. App. 178, 115054 (2021)
Acknowledgements
The authors thank to CONACYT, as well as TecNM-CENIDET for their financial support through the project “Delimitación de masas sólidas malignas en mamografías mediante un algoritmo de nodos conectados con el menor ángulo polar".
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mújica-Vargas, D., Luna-Álvarez, A., Rosales-Silva, A., Palacios-Cervantes, A. (2022). Delimitation of Benign and Malignant Masses in Breast Ultrasound by Clustering of Intuitionistic Fuzzy Superpixels Using DBSCAN Algorithm. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-07750-0_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07749-4
Online ISBN: 978-3-031-07750-0
eBook Packages: Computer ScienceComputer Science (R0)