Nothing Special   »   [go: up one dir, main page]

Skip to main content

Delimitation of Benign and Malignant Masses in Breast Ultrasound by Clustering of Intuitionistic Fuzzy Superpixels Using DBSCAN Algorithm

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2022)

Abstract

In this study, we propose a scheme to delimit benign and malignant masses in breast ultrasound images. It consists of two stages: superpixels extraction by an Intuitionistic Fuzzy algorithm, which considers the local information of the image to develop a local segmentation; and clustering the superpixels by means of DBSCAN algorithm. The proposal does not require preprocessing of noise reduction inherent to this type of medical images or enhancement of features. The effectiveness of our proposal is verified by quantitative and qualitative results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahn, E., Feng, D., Kim, J.: A spatial guided self-supervised clustering network for medical image segmentation (2021)

    Google Scholar 

  2. Al-Dhabyani, W., Gomaa, M., Khaled, H., Fahmy, A.: Dataset of breast ultrasound images. Data Brief 28, 104863 (2020)

    Article  Google Scholar 

  3. Byra, M., et al.: Joint segmentation and classification of breast masses based on ultrasound radio-frequency data and convolutional neural networks. Ultrasonics, 106682 (2022)

    Google Scholar 

  4. Chen, H., et al.: Segmentation of lymph nodes in ultrasound images using u-net convolutional neural networks and Gabor-based anisotropic diffusion. J. Med. Biol. Eng. 41(6), 942–952 (2021)

    Article  Google Scholar 

  5. Elawady, M., Sadek, I., Shabayek, A.E.R., Pons, G., Ganau, S.: Automatic nonlinear filtering and segmentation for breast ultrasound images. In: Campilho, A., Karray, F. (eds.) Image Analysis and Recognition, pp. 206–213. Springer International Publishing, Cham (2016). https://doi.org/10.1007/978-3-319-41501-7_24

    Chapter  Google Scholar 

  6. Fayed, L., Seong, J.: Differences between a malignant and benign tumor. verywellhealth.com (2020)

    Google Scholar 

  7. Gökcen, A., Kalyoncu, C.: Real-time impulse noise removal. J. Real-Time Image Process. 17(3), 459–469 (2018). https://doi.org/10.1007/s11554-018-0791-y

    Article  Google Scholar 

  8. Joshi, A., Khan, M.S., Niaz, A., Akram, F., Song, H.C., Choi, K.N.: Active contour model with adaptive weighted function for robust image segmentation under biased conditions. Expert Syst. App. 175, 114811 (2021)

    Article  Google Scholar 

  9. Karthik, B., Krishna Kumar, T., Vijayaragavan, S.P., Sriram, M.: Removal of high density salt and pepper noise in color image through modified cascaded filter. J. Amb. Intell. Human. Comput. 12(3), 3901–3908 (2020). https://doi.org/10.1007/s12652-020-01737-1

    Article  Google Scholar 

  10. Magny, S.J., Shikhman, R., Keppke, A.L.: Breast imaging reporting and data system. StatPearls [Internet] (2021)

    Google Scholar 

  11. Mao, Y.M., Mwakapesa, D.S., Li, Y., Xu, K., Nanehkaran, Y.A., Zhang, M.: Assessment of landslide susceptibility using DBSCAN-AHD and LD-EV methods. J. Mount. Sci. 19(1), 184–197 (2022)

    Google Scholar 

  12. Meenalochini, G., Ramkumar, S.: Survey of machine learning algorithms for breast cancer detection using mammogram images. Mater. Today Proc. 37, 2738–2743 (2021)

    Article  Google Scholar 

  13. Militello, C.: Semi-automated and interactive segmentation of contrast-enhancing masses on breast DCE-MRI using spatial fuzzy clustering. Biomed. Signal Process. Control 71, 103113 (2022)

    Article  Google Scholar 

  14. Mújica-Vargas, D.: Superpixels extraction by an intuitionistic fuzzy clustering algorithm. J. Appl. Res. Technol. 19(2), 140–152 (2021)

    Article  Google Scholar 

  15. Patra, D.K., Si, T., Mondal, S., Mukherjee, P.: Breast DCE-MRI segmentation for lesion detection by multi-level thresholding using student psychological based optimization. Biomed. Signal Process. Control 69, 102925 (2021)

    Article  Google Scholar 

  16. Rodríguez-Cristerna, A., Gómez-Flores, W., de Albuquerque-Pereira, W.C.: BUSAT: a MATLAB Toolbox for breast ultrasound image analysis. In: Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds.) MCPR 2017. LNCS, vol. 10267, pp. 268–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59226-8_26

    Chapter  Google Scholar 

  17. Song, J., Zhang, Z.: A modified robust FCM model with spatial constraints for brain MR image segmentation. Information 10(2), 74 (2019). https://doi.org/10.3390/info10020074

    Article  MathSciNet  Google Scholar 

  18. Vakanski, A., Xian, M., Freer, P.E.: Attention-enriched deep learning model for breast tumor segmentation in ultrasound images. Ultrasound Med. Biol. 46(10), 2819–2833 (2020)

    Article  Google Scholar 

  19. Xu, Y., Wang, Y., Yuan, J., Cheng, Q., Wang, X., Carson, P.L.: Medical breast ultrasound image segmentation by machine learning. Ultrasonics 91, 1–9 (2019)

    Article  Google Scholar 

  20. Zhang, Y., Liu, M., He, J., Pan, F., Guo, Y.: Affinity fusion graph-based framework for natural image segmentation. IEEE Trans. Multimed. (2021)

    Google Scholar 

  21. Zhu, Q., Tang, X., Elahi, A.: Application of the novel harmony search optimization algorithm for DBSCAN clustering. Expert Syst. App. 178, 115054 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank to CONACYT, as well as TecNM-CENIDET for their financial support through the project “Delimitación de masas sólidas malignas en mamografías mediante un algoritmo de nodos conectados con el menor ángulo polar".

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Mújica-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mújica-Vargas, D., Luna-Álvarez, A., Rosales-Silva, A., Palacios-Cervantes, A. (2022). Delimitation of Benign and Malignant Masses in Breast Ultrasound by Clustering of Intuitionistic Fuzzy Superpixels Using DBSCAN Algorithm. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07750-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07749-4

  • Online ISBN: 978-3-031-07750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics