Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Wide & Deep Learning Approach for Covid-19 Tweet Classification

  • Conference paper
  • First Online:
Pattern Recognition (MCPR 2022)

Abstract

Public health surveillance via social media can be a useful tool to identify and track potential cases of a disease. The aim of this research was to design a method for identifying tweets describing potential Covid-19 cases. The proposed method uses a Wide & Deep (W&D) architecture, which combines two learning branches fed from different features to improve classification effectiveness. The deep branch uses a BERT-type model, while the wide branch considers two different lexical-based features. It was evaluated on the data from Task 5 of the Social Media Mining For Health (#SMM4H) 2021 competition. Results show that the proposed W&D method performed better than the wide-only and deep-only models, achieving an F1-score of 0.79 which matches the results of the 1st place ensemble-model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A model based on BERT_Large pre-trained on a large collection of Covid-19 tweets.

References

  1. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/. Accessed 30 Jan 2022

  2. Oliver, D.: Mistruths and misunderstandings about covid-19 death numbers. In: BMJ 2021, vol. 372, pp. 352. the bmj. https://doi.org/10.1136/bmj.n352

  3. Al-Garadi, M.A., Khan, M.S., Varathan, K.D., Mujtaba, G., Al-kabsi, A.M.: Using online social networks to track a pandemic: a systematic review. J. Biomed. Inform. 62, 1–11 (2016)

    Article  Google Scholar 

  4. Xu, W., Ritter, A., Baldwin, T., Rahimi, A.: Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020). Association for Computational Linguistics (2020). https://aclanthology.org/2020.wnut-1.0

  5. Klein, A., et al.: Proceedings of the Sixth Social Media Mining for Health (#SMM4H) Workshop and Shared Task. Association for Computational Linguistics, Mexico City, Mexico (2021). https://aclanthology.org/2021.smm4h-1.0

  6. Valdes, A., Lopez, J., Montes, M.: UACH-INAOE at SMM4H: a BERT based approach for classification of COVID-19 Twitter posts. In: Proceedings of the Sixth Social Media Mining for Health #SMM4H Workshop and Shared Task, pp. 65–68. Association for Computational Linguistics, Mexico City, Mexico (2021). https://doi.org/10.18653/v1/2021.smm4h-1.10

  7. Aji, A., Nityasya, M., Wibowo, H., Prasojo, R., Fatyanosa, T.: BERT Goes BRRR: a venture towards the lesser error in classifying medical self-reporters on Twitter. In: Proceedings of the Sixth Social Media Mining for Health #SMM4H Workshop and Shared Task, pp. 58–64. Association for Computational Linguistics, Mexico City, Mexico (2021). https://doi.org/10.18653/v1/2021.smm4h-1.9

  8. Cheng, H., et al.: Wide & Deep Learning for Recommender Systems (2016)

    Google Scholar 

  9. Müller, M., Salathé, M, Kummervold, P.: COVID-Twitter-BERT: A Natural Language Processing Model to Analyse COVID-19 Content on Twitter (2020)

    Google Scholar 

  10. Ortega, R., Franco, A., Montes, M.: Identificación del perfil de autores en redes sociales usando nuevos esquemas de pesado que enfatizan información de tipo personal. Computación y Sistemas 23(2), 501–510 (2019) https://doi.org/10.13053/cvs-23-2-3005

  11. Banik, S., Gosh, A., Banik, S.: Classification of COVID19 Tweets based on sentimental analysis. In: 2021 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–7 (2021) https://doi.org/10.1109/ICCCI50826.2021.9402540

  12. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2019)

    Google Scholar 

  13. Magge, A., Pimpalkhute, V., Rallapalli, D, Siguenza, D., Gonzalez, G.: UPennHLP at WNUT-2020 task 2 : transformer models for classification of COVID19 posts on Twitter. In: Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020), pp. 378–382. Association for Computational Linguistics (2020)

    Google Scholar 

  14. Bai, Y., Zhou, X.: Automatic detecting for health-related Twitter Data with BioBERT. In: Proceedings of the Fifth Social Media Mining for Health Applications Workshop and Shared Task 2020, pp. 63–69. Association for Computational Linguistics, Barcelona, Spain (2020)

    Google Scholar 

  15. Vaswani, A., et al.: Attention Is All You Need (2017)

    Google Scholar 

  16. Roitero, K., Bozzato, C., Della-Mea, V., Mizzaro, S., Serra, G.: Twitter goes to the doctor: detecting medical Tweets using machine learning and BERT. In: Proceedings of the Workshop on Semantic Indexing and Information Retrieval for Health from Heterogeneous Content Types and Languages Co-located with 42nd European Conference on Information Retrieval, pp. 63–69. CEUR-WS.org, Lisbon, Portugal (2020)

    Google Scholar 

  17. Ifeanyi, C., Azah, N., Liyana, S.: Context-based feature technique for sarcasm identification in benchmark datasets using deep learning and BERT model. IEEE Access 9, 48501–48518 (2021)

    Article  Google Scholar 

  18. López-Santillán, R., González, L., Montes-y-Gómez, M., López-Monroy, P., López-Santillán, M.: A Transformer-based Wide & Deep Neural Network for Author Profiling. In Revision (2022)

    Google Scholar 

  19. Burel, G., Saif, H., Alani, H.: Semantic wide and deep learning for detecting crisis-information categories on social media. In: International Semantic Web Conference, pp. 138–155 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alberto Valdés-Chávez , J. Roberto López-Santillán , L. Carlos Gonzalez-Gurrola , Graciela Ramírez-Alonso or Manuel Montes-y-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Valdés-Chávez, A., López-Santillán, J.R., Gonzalez-Gurrola, L.C., Ramírez-Alonso, G., Montes-y-Gómez, M. (2022). A Wide & Deep Learning Approach for Covid-19 Tweet Classification. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07750-0_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07749-4

  • Online ISBN: 978-3-031-07750-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics