Abstract
Searching for new features that contribute to the improvement of the performance of classification algorithms within the scientific area of infant crying classification for diagnostic purposes is a priority. Although several studies have suggested that some acoustic features present in the spectrogram of the signal of infant crying: stridor, melody, and shifts, could be interesting to reflect the pathological status of the newborn independently, a deeper study is still missing. This paper aims to demonstrate the potential of those attributes not sufficiently addressed in the state of the art of cry analysis when they’re properly combined. For this purpose, the Random Forest and k-Nearest Neighbor classification algorithms are used. The set of input vectors to the classifier also incorporates other well-known cry features that have proven to be effective in cry classification such as the Mel Frequency Cepstral Coefficients (MFCCs), fundamental frequency (F0), and the energy (E). The 10-fold cross-validation method was also used to evaluate the classifier performance as well as some standard metrics were used to evaluate the classifier results. Finally, a binary classifier for Central Nervous System (CNS) disorders with a Hypoxia background is proposed. The used experimental corpus comprises 616 samples of 1-s duration (253 pathological and 363 normal), corresponding to 54 children in age ranging from 0 to 3 months. The experimental results support the validity of the proposed feature set (stridor, melody, and shifts) for a child crying classification task as diagnostic method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Two classes derived from six clinical control groups just for medical purpose.
References
Varallyay, G., Benyo, Z., Illenyi, A., Farkas, Z., Kovacs, L.: Acoustic analysis of the infant cry: classical and new methods. In: 26th Annual International Conference of the IEEE EM BS, pp. 313–316. San Francisco, CA, USA (2004)
Varallyay, G.: Future prospects of the infant cry in the medicine. Periodica Polytechnica Ser. El. Eng. 50(1–2), 47–62 (2006)
Lederman, D.: Estimation of infant’s cry fundamental frequency using a modified SIFT algorithm. arXiv:1009.2796v1 [cs. SD] 14 Sep, pp. 1–5 (2010)
Osmani, A., Hamidi, M., Chibani, A.: Machine learning approach for infant cry interpretation. In: Proceedings – International Conference on Tools with Artificial Intelligence, ICTAI. (2018). https://doi.org/10.1109/ICTAI.2017.00038
Huckvale, M.: Neural network architecture that combines temporal and summative features for infant cry classification. In: Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH in the Interspeech 2018 Computational Paralinguistic Challenge, pp. 137–141 (2018). https://doi.org/10.21437/Interspeech.2018-1959
Chittora, A., Patil, H.A.: Significance of unvoiced segments and fundamental frequency in infant cry analysis. In: Král, P., Matoušek, V. (eds.) TSD 2015. LNCS (LNAI), vol. 9302, pp. 273–281. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24033-6_31
Orlandi, S., Reyes Garcia, C.A., Bandini, A., Donzelli, G., Manfredi, C.: Application of pattern recognition techniques to the classification of full-term and preterm infant cry. J. Voice. 30(6), 656–663 (2016). https://doi.org/10.1016/j.jvoice.2015.08.007
Zabidi, A., Khuan, L. Y., Mansor, W., Yassin, I. M., Sahak, R.: Detection of infant hypothyroidism with mel frequency cepstrum analysis and multi-layer perceptron classification. In: Proceedings -CSPA 2010: 2010 6th International Colloquium on Signal Processing and Its Applications, pp. 140–144 (2010). https://doi.org/10.1109/CSPA.2010.5545331
Gu, G., Shen, X., Xu, P.: A set of DSP system to detect baby crying. In: Proceedings of 2018 2nd IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, IMCEC 2018, pp. 411–415 (2018). https://doi.org/10.1109/IMCEC.2018.8469246
Galaviz, O.F.R., García, C.A.R.: Infant cry classification to identify hypo acoustics and asphyxia comparing an evolutionary-neural system with a neural network system. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 949–958. Springer, Heidelberg (2005). https://doi.org/10.1007/11579427_97
Liu, L., Li, W., Wu, X., Zhou, B.X.: Infant cry language analysis and recognition: an experimental approach. IEEE/CAA J. Autom. Sin. 6(3), 778–788 (2019). https://doi.org/10.1109/JAS.2019.1911435
Franti, E., Ispas, I., Dascalu, M.: Testing the Universal Baby Language hypothesis - automatic infant speech recognition with CNNs. In: 2018 41st International Conference on Telecommunications and Signal Processing, TSP 2018, pp. 1–4 (2018). https://doi.org/10.1109/TSP.2018.8441412
Le, L., Kabir, A.N.M.H., Ji, C., Basodi, S., Pan, Y.: Using transfer learning, SVM, and ensemble classification to classify baby cries based on their spectrogram images. In: Proceedings - 2019 IEEE 16th International Conference on Mobile Ad Hoc and Smart Systems Workshops, MASSW 2019. (2019). https://doi.org/10.1109/MASSW.2019.00028
Chang, C.-Y., Tsai, L.-Y.: A CNN-based method for infant cry detection and recognition. In: Barolli, L., Takizawa, M., Xhafa, F., Enokido, T. (eds.) WAINA 2019. AISC, vol. 927, pp. 786–792. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15035-8_76
Felipe, G.Z., et al.: Identification of infants’ cry motivation using spectrograms. In: 2019 International Conference on Systems, Signals and Image Processing (IWSSIP), pp. 181–186 (2019). https://doi.org/10.1109/IWSSIP.2019.8787318
Michelsson, K.: Cry characteristics in sound spectrographic cry analysis. In: Murry, T., Murry, J. (eds.) Infant Communication: Cry and Early Speech, pp. 85–105. College-Hill Press, Houston (1980)
Cano, S., Suaste, I., Escobedo, D., Reyes-García, C.A., Ekkel, T.: A combined classifier of cry units with new acoustic attributes. In: Martínez-Trinidad, J Francisco, Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 416–425. Springer, Heidelberg (2006). https://doi.org/10.1007/11892755_43
Reyes-García, C.A., Torres-García, A.A., RuizDiaz, M.A.: Extracción de Características Cualitativas del Llanto de Bebé y su Clasificación para la Identificación de Patologías Utilizando Modelos Neuro-Difusos. In: Memorias del Congreso Nacional de Ingeniería Biomédica, vol. 5, no. 1, pp. 106–109 (2018)
Wasz-Höckert, O., Koivisto, M., Vuorenkoski, V., Partanen, T., Lind, J.: Spectrographic analysis of pain cry in hyperbilirubinemia. Biol. Neonate. 17, 260–271 (1971)
Michelsson, K., Sirviö, P., Wasz-Höckert, O.: Pain cry in full-term asphyxiated newborninfants correlated with late findings. Acta Paediatr. Scand. 66(5), 611–616 (1977)
Michelsson, K., Sirviö, P., Wasz- Höckert, O.: Sound spectrographic cry analysis of infants with bacterial meningitis. Dev Med Child Neurol. 19(3), 309–315 (1977). https://doi.org/10.1111/j.1469-8749.1977.tb08366.x. PMID: 18378
Hariharan, M., Yaacob, S., Awang, S.A.: Pathological infant cry analysis using wavelet packet transform and probabilistic neural network. Expert Syst. Appl. 38(12), 15377–15382 (2011). https://doi.org/10.1016/j.eswa.2011.06.025
Escobedo, D., Cano, S., Coello, E., Regueiferos, L., Capdevila, L.: Rising shift of pitch frequency in the infant cry of some pathologic cases. In: 2nd International Conference, MAVEBA 2001, Firenze, Italy (2001)
Acknowledgments
This work has been fully supported by the Belgian Development Cooperation through VLIR-UOS (Flemish Interuniversity Council-University Cooperation for Development) in the context of the Institutional University Cooperation programme with Universidad de Oriente.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cano-Ortiz, S.D., Martinez-Canete, Y., Veranes-Vicet, L. (2022). Evaluating New Set of Acoustical Features for Cry Signal Classification. In: Vergara-Villegas, O.O., Cruz-Sánchez, V.G., Sossa-Azuela, J.H., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Olvera-López, J.A. (eds) Pattern Recognition. MCPR 2022. Lecture Notes in Computer Science, vol 13264. Springer, Cham. https://doi.org/10.1007/978-3-031-07750-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-031-07750-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07749-4
Online ISBN: 978-3-031-07750-0
eBook Packages: Computer ScienceComputer Science (R0)