Nothing Special   »   [go: up one dir, main page]

Skip to main content

Segmentation of Brain MR Images Using Quantum Inspired Firefly Algorithm with Mutation

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13346))

Abstract

Segmentation of brain images generated by magnetic resonance imaging (MRI) is an important part of clinical medicine as it enables three-dimensional reconstruction and downstream analysis of normal and pathological regions. Segmenting white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF) automatically are challenging tasks. In this paper, a clustering-based segmentation of MR images is performed using a modified quantum-inspired firefly algorithm with mutation operation. In the proposed method, a mutation operation based on the X-gate has overcome the restriction on initial centroids trapped in local optima. The objective function is chosen to be the minimum intra-cluster distance. The suggested approach has been tested on several sections of human brain images with differing cluster numbers. Correlation, SSIM, entropy, and PSNR have been used to evaluate the outputs of the method. The evaluation metrics indicate that the proposed clustering-based algorithm successfully segmented the MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jeena, R.S., Kumar, S.: A comparative analysis of MRI and CT brain images for stroke diagnosis. In: 2013 Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy, pp. 1–5 (2013)

    Google Scholar 

  2. Kloska, S.P., Wintermark, M., Engelhorn, T., Fiebach, J.B.: Acute stroke magnetic resonance imaging: current status and future perspective. Neuroradiology 52(3), 189–201 (2009)

    Article  Google Scholar 

  3. Mamelak, A.N., Jacoby, D.B.: Targeted delivery of antitumoral therapy to glioma and other malignancies with synthetic chlorotoxin (TM-601). Expert Opin. Drug Deliv. 4(2), 175–186 (2007)

    Article  CAS  Google Scholar 

  4. Ostrom, Q.T., et al.: The epidemiology of glioma in adults: a “state of the science’’ review. Neuro-Oncol. 16(7), 896–913 (2014)

    Article  CAS  Google Scholar 

  5. Olivero, W.C., Lister, J.R., Elwood, P.W.: The natural history and growth rate of asymptomatic meningiomas: a review of 60 patients. J. Neurosurg. 83(2), 222–224 (1995)

    Article  CAS  Google Scholar 

  6. Lee, W., et al.: MR imaging features of clear-cell meningioma with diffuse leptomeningeal seeding. AJNR Am. J. Neuroradiol. 21(1), 130–132 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Masangcap, M.L.G., Sison, A.M., Medina, R.P.: An improved initialization method using firefly movement and light intensity for better clustering performance. In: Proceedings of the 2nd International Conference on Software Engineering and Information Management, pp. 30–34 (2019)

    Google Scholar 

  8. Xie, H., et al.: Improving k-means clustering with enhanced firefly algorithms. Appl. Soft Comput. 84, 105763 (2019)

    Article  Google Scholar 

  9. Khrissi, L., Akkad, N.E., Satori, H., Satori, K.: Simple and efficient clustering approach based on cuckoo search algorithm. In: 2020 Fourth International Conference on Intelligent Computing in Data Sciences (ICDS), pp. 1–6 (2020)

    Google Scholar 

  10. Pal, R., Yadav, S., Karnwal, R., Aarti: EEWC: energy-efficient weighted clustering method based on genetic algorithm for HWSNs. Complex Intell. Syst. 6(2), 391–400 (2020). https://doi.org/10.1007/s40747-020-00137-4

  11. Zhao, J., Tang, J., Shi, A., Fan, T., Xu, L.: Improved density peaks clustering based on firefly algorithm. Int. J. Bio-Inspir. Comput. 15(1), 24 (2020)

    Article  CAS  Google Scholar 

  12. Dey, A., Dey, S., Bhattacharyya, S., Platos, J., Snasel, V.: Novel quantum inspired approaches for automatic clustering of gray level images using particle swarm optimization, spider monkey optimization and ageist spider monkey optimization algorithms. Appl. Soft Comput. 88, 106040 (2020)

    Article  Google Scholar 

  13. Das, S., De, S., Dey, S., Bhattacharyya, S.: Magnetic resonance image segmentation using a quantum-inspired modified genetic algorithm (QIANA) based on FRCM (2020)

    Google Scholar 

  14. Dhal, K.G., Das, A., Ray, S., Gálvez, J.: Randomly attracted rough firefly algorithm for histogram based fuzzy image clustering. Knowl.-Based Syst. 216, 106814 (2021)

    Article  Google Scholar 

  15. Verma, H., Verma, D., Tiwari, P.K.: A population based hybrid FCM-PSO algorithm for clustering analysis and segmentation of brain image. Expert Syst. Appl. 167, 114121 (2021)

    Article  Google Scholar 

  16. Dey, A., Dey, S., Bhattacharyya, S., Platos, J., Snasel, V.: Quantum inspired meta-heuristic approaches for automatic clustering of colour images. Int. J. Intell. Syst. 36(9), 4852–4901 (2021)

    Article  Google Scholar 

  17. Choudhury, A., Samanta, S., Pratihar, S., Bandyopadhyay, O.: Multilevel segmentation of Hippocampus images using global steered quantum inspired firefly algorithm. Appl. Intell. 52, 7339–7372 (2021). https://doi.org/10.1007/s10489-021-02688-6

    Article  Google Scholar 

  18. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. London A Math. Phys. Sci. 400(1818), 97–117 (1985)

    Google Scholar 

  19. Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6(6), 580–593 (2002)

    Article  Google Scholar 

  20. Yang, X.-S.: Firefly algorithms for multimodal optimization. In: Watanabe, O., Zeugmann, T. (eds.) SAGA 2009. LNCS, vol. 5792, pp. 169–178. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04944-6_14

    Chapter  Google Scholar 

  21. Yang, X.S.: Nature-Inspired Metaheuristic Algorithms. Luniver Press (2010)

    Google Scholar 

  22. Dey, N. (ed.): Applications of Firefly Algorithm and its Variants. STNC, Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0306-1

    Book  Google Scholar 

  23. eHealth Lab, Department of Computer Science, U.O.C.: Dataset: http://www.medinfo.cs.ucy.ac.cy/index.php/facilities/32-software/218-datasets. Accessed 10 Mar 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjoy Pratihar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choudhury, A., Samanta, S., Pratihar, S., Bandyopadhyay, O. (2022). Segmentation of Brain MR Images Using Quantum Inspired Firefly Algorithm with Mutation. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2022. Lecture Notes in Computer Science(), vol 13346. Springer, Cham. https://doi.org/10.1007/978-3-031-07704-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07704-3_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07703-6

  • Online ISBN: 978-3-031-07704-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics