Nothing Special   »   [go: up one dir, main page]

Skip to main content

Domain Ontology Construction with Activity Logs and Sensors Data – Case Study of Smart Home Activities

  • Conference paper
  • First Online:
Advanced Information Systems Engineering Workshops (CAiSE 2022)

Part of the book series: Lecture Notes in Business Information Processing ((LNBIP,volume 451))

Included in the following conference series:

  • 437 Accesses

Abstract

Process mining relies on activity logs to discover process models, check their conformance, enhance processes, and recommend the next activity. On another side, many environmental factors such as time, location, weather, and profile are obtained from many sources, such as sensors, external systems, outside actors, or domain knowledge bases, and could also enhance recommendations. The existing research mainly focuses on single activity log datasets; only a few consider combining various sources. Our main goal is to provide better inputs to process discovery and better recommendations. In this paper, we focus on the combination of activity logs and sensors data with domain ontology as an intermediate step to attaining our goal. We use a case study of smart home activities to test this combination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Heidelberg (2016). ISBN: 978-3-662-49850-7

    Google Scholar 

  2. Khodabandelou, G., Hug, C., Deneckère, R., Salinesi, C.: Process Mining Versus Intention Mining. In: Lecture Notes in Business Information Processing, vol. 147, pp. 466–480. Springer, Heidelberg (2013)

    Google Scholar 

  3. Compagno, D., Epure, E., Deneckere, R., Salinesi, C.: Exploring digital conversation corpora with process mining. Corpus Pragmatics 2, 1–23 (2018)

    Google Scholar 

  4. Woznowski, P., King, R., Harwin, W., Craddock, I.: A human activity recognition framework for healthcare applications: ontology, labelling strategies, and best practice, pp. 369–377 (2016)

    Google Scholar 

  5. Mansingh, G., Osei-Bryson, K.M., Reichgelt, H.: Using ontologies to facilitate post-processing of association rules by domain experts. Inf. Sci. 181(3), 419–434 (2011)

    Article  Google Scholar 

  6. Viinikkala, M.: Ontology in information systems. In: Computer Science (2004)

    Google Scholar 

  7. Koschmider, A., Leotta, F., Serral, E., Torres, V.: BP-Meets-IoT 2021 Challenge Dataset (2021)

    Google Scholar 

  8. Ge, J., Chen, Z., Peng, J., Li, T.: An ontology-based method for personalized recommendation. In: 2012 IEEE 11th International Conference on Cognitive Informatics and Cognitive Computing, Kyoto, Japan, pp. 522–526 (2012)

    Google Scholar 

  9. Obeid, C., Lahoud, I., Khoury, H., Champin, P.A.: Ontology-based recommender system in higher education. In: 2018 Web Conference Companion (WWW 2018), France (2018)

    Google Scholar 

  10. Zhang, Z., Gong, L., Xie, J.: Ontology-based collaborative filtering recommendation algorithm. In: Liu, D., Alippi, C., Zhao, D., Hussain, A. (eds.) BICS 2013. LNCS (LNAI), vol. 7888, pp. 172–181. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38786-9_20

    Chapter  Google Scholar 

  11. Middleton, S.E., Roure, D.D., Shadbolt, N.R.: Ontology-based recommender systems. In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 779–796. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_35

    Chapter  Google Scholar 

  12. Chen, L., Nugent, C., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 24, 1 (2012). https://doi.org/10.1109/TKDE.2011.51

  13. Salguero, A., Espinilla, M., Delatorre, P., Medina, J.: Using ontologies for the online recognition of activities of daily living. Sensors 18 (2018)

    Google Scholar 

  14. Chen, L., Nugent, C.: Ontology-based activity recognition in intelligent pervasive environments. IJWIS 5, 410–430 (2009)

    Article  Google Scholar 

  15. Bae, I.: An ontology-based approach to ADL recognition in smart homes. Futur. Gener. Comput. Syst. 33, 32–41 (2014)

    Article  Google Scholar 

  16. Zaki, M.J., Meira Jr., W.: Data Mining and Analysis: Fundamental Concepts and Algorithms (2014)

    Google Scholar 

  17. Aher, S.M.D.A., Lobo, L.M.R.J.: A comparative study of association rule algorithms for course recommender system in E-learning. Int. J. Comput. Appl. 39, 48–52 (2012). https://doi.org/10.5120/4788-7021

  18. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings International Conference Very Large Data Bases (VLDB), pp. 487–499, September 1994

    Google Scholar 

  19. Tiwari, P., Garg, V., Agrawal, R.: Changing world: smart homes review and future. In: Moh, M., Sharma, K.P., Agrawal, R., Garcia Diaz, V. (eds.) Smart IoT for Research and Industry. EICC, pp. 145–160. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-71485-7_9

    Chapter  Google Scholar 

  20. Alam, M.R., Reaz, M.B.I., Ali, M.A.M.: A review of smart homes - past, present, and future. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42, 1190–1203 (2012)

    Google Scholar 

  21. De Silva, L.C., Morikawa, C., Petra, I.M.: State of the art of smart homes. Eng. Appl. Artif. Intell. 25, 1313–1321 (2012)

    Google Scholar 

  22. Alaa, M., Zaidan, A.A., Zaidan, B.B., Talal, M., Kiah, M.L.M.: A review of smart home applications based on Internet of Things. J. Netw. Comput. Appl. 97, 48–65 (2017)

    Google Scholar 

  23. Tamilselvi, R., Sivasakthi, B., Kavitha, R.: An efficient preprocessing and postprocessing techniques in data mining. Int. J. Res. Comput. Appl. Rob. 3(4), 80–85 (2015)

    Google Scholar 

  24. Elali, R.: Data exploration of BP-Meets-IoT 2021 challenge dataset: correspondences & associations rules result. White Paper, University of Paris 1 Panthéon-Sorbonne (2022)

    Google Scholar 

  25. Diaz-Rodriguez, O.E., Perez, M., Lascano, J.: Literature review about intention mining in information systems. J. Comput. Inf. Syst. 61, 1–10 (2019)

    Google Scholar 

  26. Van Eck, M.L., Sidorova, N., Van der Aalst, W.M.: Enabling process mining on sensor data from smart products. In: 2016 IEEE Tenth International Conference on Research Challenges in Information Science (RCIS), pp. 1–12. IEEE, June 2016

    Google Scholar 

  27. Diba, K., Batoulis, K., Weidlich, M., Weske, M.: Extraction, correlation, and abstraction of event data for process mining. Wiley Interdisc. Rev. Data Min. Knowl. Discovery 10(3), e1346 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona Elali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Elali, R., Kornyshova, E., Deneckère, R., Salinesi, C. (2022). Domain Ontology Construction with Activity Logs and Sensors Data – Case Study of Smart Home Activities. In: Horkoff, J., Serral, E., Zdravkovic, J. (eds) Advanced Information Systems Engineering Workshops. CAiSE 2022. Lecture Notes in Business Information Processing, vol 451. Springer, Cham. https://doi.org/10.1007/978-3-031-07478-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07478-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07477-6

  • Online ISBN: 978-3-031-07478-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics