Nothing Special   »   [go: up one dir, main page]

Skip to main content

Non-malleable Commitments Against Quantum Attacks

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2022 (EUROCRYPT 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13277))

Abstract

We construct, under standard hardness assumptions, the first non-malleable commitments secure against quantum attacks. Our commitments are statistically binding and satisfy the standard notion of non-malleability with respect to commitment. We obtain a \(\log ^\star (\lambda )\)-round classical protocol, assuming the existence of post-quantum one-way functions.

Previously, non-malleable commitments with quantum security were only known against a restricted class of adversaries known as synchronizing adversaries. At the heart of our results is a new general technique that allows to modularly obtain non-malleable commitments from any extractable commitment protocol, obliviously of the underlying extraction strategy (black-box or non-black-box) or round complexity. The transformation may also be of interest in the classical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Recall that non-malleability requires that the joint distribution of the output state of the adversary and the committed value are indistinguishable regardless of the committed value on the left. Hence the reduction needs to extract the committed value without disturbing the state of the quantum adversary.

  2. 2.

    In the body, we observe that Naor commitments [Nao91], which can be obtained from (post-quantum) one-way functions, and thus also from any commitment, are in fact sufficient.

  3. 3.

    Recall that currently, if \(w = \mathtt {IP}_2\), we extract \(\tilde{v}_1\) inefficiently using the sequential committed-value oracle \({\mathcal {O}} ^{\infty }= {\mathcal {O}} ^{\infty }[\mathsf {ExCom}.\mathsf {Sen},\mathsf {ExCom}.\mathsf {Rec}]\). If \(w = \mathtt {P}_2\mathtt {I}\) we don’t have this problem, as the ideally scheduled right block commitment i starts after the beginning of Phase 2 on the left.

References

  1. Agarwal, A., Bartusek, J., Goyal, V., Khurana, D., Malavolta, G.: Post-quantum multi-party computation in constant rounds. CoRR, abs/2005.12904 (2020)

    Google Scholar 

  2. Ananth, P., La Placa, R.L.: Secure quantum extraction protocols. IACR Cryptol. ePrint Arch. 2019, 1323 (2019)

    MATH  Google Scholar 

  3. Barak, B.: Constant-round coin-tossing with a man in the middle or realizing the shared random string model, pp. 345–355 (2002)

    Google Scholar 

  4. Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bitansky, N., Lin, H.: One-message zero knowledge and non-malleable commitments. In: Beimel, A., Dziembowski, S. (eds.) TCC 2018, Part I. LNCS, vol. 11239, pp. 209–234. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03807-6_8

    Chapter  Google Scholar 

  6. Bitansky, N., Shmueli, O.: Post-quantum zero knowledge in constant rounds. In: Makarychev, K., Makarychev, Y., Tulsiani, M., Kamath, G., Chuzhoy, J. (eds.) Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, 22–26 June 2020, pp. 269–279. ACM (2020)

    Google Scholar 

  7. Chia, N.-H., Chung, K.-M., Liang, X., Yamakawa, T.: Post-quantum simulatable extraction with minimal assumptions: black-box and constant-round. arXiv preprint arXiv:2111.08665 (2021)

  8. Chia, N.-H., Chung, K.-M., Yamakawa, T.: Black-box approach to post-quantum zero-knowledge in constant round. arXiv preprint arXiv:2011.02670 (2020)

  9. Canetti, R., Lin, H., Pass, R.: Adaptive hardness and composable security in the plain model from standard assumptions. SIAM J. Comput. 45(5), 1793–1834 (2016)

    Article  MathSciNet  Google Scholar 

  10. Chiesa, A., Ma, F., Spooner, N., Zhandry, M.: Post-quantum succinct arguments. arXiv preprint arXiv:2103.08140 (2021)

  11. Ciampi, M., Ostrovsky, R., Siniscalchi, L., Visconti, I.: Concurrent non-malleable commitments (and more) in 3 rounds. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9816, pp. 270–299. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_10

    Chapter  MATH  Google Scholar 

  12. Chor, B., Rabin, M.O.: Achieving independence in logarithmic number of rounds. In: Proceedings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, Vancouver, British Columbia, Canada, 10–12 August 1987, pp. 260–268 (1987)

    Google Scholar 

  13. Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Rev. 45(4), 727–784 (2003)

    Article  MathSciNet  Google Scholar 

  14. Feige, U., Lapidot, D., Shamir, A.: Multiple noninteractive zero knowledge proofs under general assumptions. SIAM J. Comput. 29(1), 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  15. Fuchs, C.A., Peres, A.: Quantum-state disturbance versus information gain: uncertainty relations for quantum information. Phys. Rev. A 53, 2038–2045 (1996)

    Article  Google Scholar 

  16. Garg, R., Khurana, D., Lu, G., Waters, B.: Black-box non-interactive non-malleable commitments. Cryptology ePrint Archive, Report 2020/1197 (2020). https://eprint.iacr.org/2020/1197

  17. Goyal, V., Khurana, D., Sahai, A.: Breaking the three round barrier for non-malleable commitments, pp. 21–30 (2016)

    Google Scholar 

  18. Goyal, V., Lee, C.-K., Ostrovsky, R., Visconti, I.: Constructing non-malleable commitments: a black-box approach, pp. 51–60 (2012)

    Google Scholar 

  19. Goyal, V.: Constant round non-malleable protocols using one way functions, pp. 695–704 (2011)

    Google Scholar 

  20. Goyal, V., Pandey, O., Richelson, S.: Textbook non-malleable commitments. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 1128–1141 (2016)

    Google Scholar 

  21. Goyal, V., Richelson, S.: Non-malleable commitments using Goldreich-Levin list decoding. In: 60th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore, Maryland, USA, 9–12 November 2019, pp. 686–699 (2019)

    Google Scholar 

  22. Hallgren, S., Smith, A., Song, F.: Classical cryptographic protocols in a quantum world. Int. J. Quant. Inf. 13(04), 1550028 (2015). Preliminary version appeared in IACR Crypto 2011

    Google Scholar 

  23. Khurana, D.: Round optimal concurrent non-malleability from polynomial hardness. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 139–171. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_5

    Chapter  Google Scholar 

  24. Kalai, Y.T., Khurana, D.: Non-interactive non-malleability from quantum supremacy. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 552–582. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_18

    Chapter  Google Scholar 

  25. Khurana, D., Sahai, A.: How to achieve non-malleability in one or two rounds. In: 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, 15–17 October 2017, pp. 564–575 (2017)

    Google Scholar 

  26. Lombardi, A., Ma, F., Spooner, N.: Post-quantum zero knowledge, revisited (or: How to do quantum rewinding undetectably). arXiv preprint arXiv:2111.12257 (2021)

  27. Lunemann, C., Nielsen, J.B.: Fully simulatable quantum-secure coin-flipping and applications. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6_2

    Chapter  Google Scholar 

  28. Lin, H., Pass, R.: Non-malleability amplification, pp. 189–198 (2009)

    Google Scholar 

  29. Lin, H., Pass, R.: Constant-round non-malleable commitments from any one-way function, pp. 705–714 (2011)

    Google Scholar 

  30. Lin, H., Pass, R.: Black-box constructions of composable protocols without set-up. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 461–478. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_27

    Chapter  Google Scholar 

  31. Lin, H., Pass, R., Soni, P.: Two-round and non-interactive concurrent non-malleable commitments from time-lock puzzles, pp. 576–587 (2017)

    Google Scholar 

  32. Lin, H., Pass, R., Venkitasubramaniam, M.: Concurrent non-malleable commitments from any one-way function. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 571–588. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78524-8_31

    Chapter  Google Scholar 

  33. Lin, H., Pass, R., Venkitasubramaniam, M.: A unified framework for concurrent security: universal composability from stand-alone non-malleability. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31–June 2 2009, pp. 179–188. ACM (2009)

    Google Scholar 

  34. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991). https://doi.org/10.1007/BF00196774

    Article  MATH  Google Scholar 

  35. Pandey, O., Pass, R., Vaikuntanathan, V.: Adaptive one-way functions and applications. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 57–74. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_4

    Chapter  Google Scholar 

  36. Pass, R., Rosen, A.: Concurrent non-malleable commitments, pp. 563–572 (2005)

    Google Scholar 

  37. Pass, R., Rosen, A.: New and improved constructions of non-malleable cryptographic protocols, pp. 533–542 (2005)

    Google Scholar 

  38. Pass, R., Wee, H.: Constant-round non-malleable commitments from sub-exponential one-way functions. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 638–655. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_32

    Chapter  Google Scholar 

  39. Rosen, A.: A note on constant-round zero-knowledge proofs for NP. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 191–202. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_11

    Chapter  Google Scholar 

  40. Unruh, D.: Quantum proofs of knowledge. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 135–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_10

    Chapter  Google Scholar 

  41. Watrous, J.: Zero-knowledge against quantum attacks. SIAM J. Comput. 39(1), 25–58 (2009)

    Article  MathSciNet  Google Scholar 

  42. Wee, H.: Efficient chosen-ciphertext security via extractable hash proofs. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 314–332. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14623-7_17

    Chapter  Google Scholar 

  43. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  Google Scholar 

Download references

Acknowledgements

Nir Bitansky is a Member of the Check Point Institute of Information Security, supported by ISF grants 18/484 and 19/2137, by Len Blavatnik and the Blavatnik Family Foundation, by the Blavatnik Interdisciplinary Cyber Research Center at Tel Aviv University, and by the European Union Horizon 2020 Research and Innovation Program via ERC Project REACT (Grant 756482). Huijia is supported by NSF grant CNS-1936825 (CAREER), CNS-2026774, a Hellman Fellowship, a JP Morgan AI Research Award, a Simons Collaboration grant on the Theory of Algorithmic Fairness. Omri Shmueli is supported by a Clore Fellowship, ISF grants 18/484 and 19/2137, by Len Blavatnik and the Blavatnik Family Foundation, and by the European Union Horizon 2020 Research and Innovation Program via ERC Project REACT (Grant 756482).

The authors are grateful to Fang Song for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nir Bitansky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bitansky, N., Lin, H., Shmueli, O. (2022). Non-malleable Commitments Against Quantum Attacks. In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13277. Springer, Cham. https://doi.org/10.1007/978-3-031-07082-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07082-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07081-5

  • Online ISBN: 978-3-031-07082-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics