Nothing Special   »   [go: up one dir, main page]

Skip to main content

Information Synthesis of Time-Geometry QCurve for Music Retrieval

  • Conference paper
  • First Online:
Mathematics and Computation in Music (MCM 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13267))

Included in the following conference series:

Abstract

We expand information segmentation to include additional properties of music geometry. We establish a distinct metric for invariant chord structure (harmonic consistency) and models for conjunct melodic motion and acoustic consonance. We combine these with centricity to form a unified measure of music geometry. Using geometric predictors and the LSQOP method, we classify music/non-music with comparable results to AI/ML, between 76% and 92% f-score.

S. Steinmetz—Work of the first author is supported in part by the Northrop Grumman Technical Fellowship.

E. Gethner—Work of the second author is supported in part by a Simons Foundation Collaboration Grant for Mathematicians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Harmonic leading overfit is defined as acoustically perceivable chord transposition, or inversion.

References

  1. Abdel-All, N.H., Abdel-Galil, E.: Numerical treatment of geodesic differential. In: International Mathematical Forum, vol. 8, pp. 15–29 (2013)

    Google Scholar 

  2. Chen, W.W., Kotz, S.: The riemannian structure of the three-parameter gamma distribution (2013)

    Google Scholar 

  3. Cont, A., Dubnov, S., Assayag, G.: On the information geometry of audio streams with applications to similarity computing. IEEE Trans. Audio Speech Lang. Process. 19, 837–846 (2010)

    Article  Google Scholar 

  4. del Pozo, I., Gómez, F.: Formalization of voice-leadings and the Nabla algorithm. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 352–358. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_30

    Chapter  Google Scholar 

  5. Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE Trans. Signal Process. 53, 2961–2974 (2005)

    Article  Google Scholar 

  6. Gethner, S.S.E., Verbeke, J.: A view of music. In: Delp, D.M.K., Kaplan, C.S., Sarhangi, R. (eds.) Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture, Phoenix, Arizona, Tessellations Publishing, pp. 289–294 (2015). http://archive.bridgesmathart.org/2015/bridges2015-289.html

  7. Fishman, Y.I., et al.: Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. J. Neurophysiol. 86, 2761–2788 (2001)

    Article  Google Scholar 

  8. Foote, J.T., Cooper, M.L.: Media segmentation using self-similarity decomposition. In: Storage and Retrieval for Media Databases, vol. 5021, pp. 167–175. International Society for Optics and Photonics (2003)

    Google Scholar 

  9. Gimeno, P., Mingote, V., Giménez, A.O., Miguel, A., Lleida, E.: Partial auc optimisation using recurrent neural networks for music detection with limited training data. In: Interspeech, pp. 3067–3071 (2020)

    Google Scholar 

  10. Gururani, S., Summers, C., Lerch, A.: Instrument activity detection in polyphonic music using deep neural networks. In: ISMIR, pp. 569–576 (2018)

    Google Scholar 

  11. Gustafsson, F.: The marginalized likelihood ratio test for detecting abrupt changes. IEEE Trans. Autom. Control 41, 66–78 (1996)

    Article  Google Scholar 

  12. Hamel, P., Eck, D.: Learning features from music audio with deep belief networks. In: ISMIR, vol. 10, pp. 339–344. Citeseer (2010)

    Google Scholar 

  13. Harte, C., Sandler, M., Gasser, M.: Detecting harmonic change in musical audio. In: Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia, pp. 21–26 (2006)

    Google Scholar 

  14. Kataoka, M., Kinouchi, M., Hagiwara, M.: Music information retrieval system using complex-valued recurrent neural networks. In: SMC’98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), vol. 5, pp. 4290–4295. IEEE (1998)

    Google Scholar 

  15. Meléndez-Catalán, B., Molina, E., Gomez, E.: Music and/or speech detection mirex 2018 submission, music information retrieval evaluation eX-change (2018)

    Google Scholar 

  16. Mesaros, A., Heittola, T., Virtanen, T.: Tut acoustic scenes 2017, evaluation dataset (2017)

    Google Scholar 

  17. Moore, B.C., Glasberg, B.R.: Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J. Acoust. Soc. Am. 74, 750–753 (1983)

    Article  Google Scholar 

  18. Nordmark, J., Fahlén, L.E.: Beat theories of musical consonance. Q. Prog. Status Rep. 29, 111–122 (1988)

    Google Scholar 

  19. Panda, R., Malheiro, R.M., Paiva, R.P.: Audio features for music emotion recognition: a survey, IEEE Trans. Affect. Comput. (2020)

    Google Scholar 

  20. Schedl, M., Gutiérrez, E.G., Urbano, J.: Music information retrieval: recent developments and applications. Found. Trends Inf. Retrieval. 8(2–3), 127–261 (2014)

    Google Scholar 

  21. Steinmetz, S., Sonic imagery: a view of music via mathematical computer science and signal processing. University of Colorado at Denver (2016)

    Google Scholar 

  22. Steinmetz, S., Gethner, E.: On musical information geometry with applications to sonified image analysis. In: To Appear in International Conference on Pattern Recognition and Image Processing, Miami (2021)

    Google Scholar 

  23. Tymoczko, D.: A Geometry of Music, Oxford University Press, Oxford, 1 (ed.) (2011)

    Google Scholar 

  24. Zhang, X.: Gtzan, November 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon Steinmetz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Steinmetz, S., Gethner, E. (2022). Information Synthesis of Time-Geometry QCurve for Music Retrieval. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-07015-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-07014-3

  • Online ISBN: 978-3-031-07015-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics