Abstract
We expand information segmentation to include additional properties of music geometry. We establish a distinct metric for invariant chord structure (harmonic consistency) and models for conjunct melodic motion and acoustic consonance. We combine these with centricity to form a unified measure of music geometry. Using geometric predictors and the LSQOP method, we classify music/non-music with comparable results to AI/ML, between 76% and 92% f-score.
S. Steinmetz—Work of the first author is supported in part by the Northrop Grumman Technical Fellowship.
E. Gethner—Work of the second author is supported in part by a Simons Foundation Collaboration Grant for Mathematicians.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Harmonic leading overfit is defined as acoustically perceivable chord transposition, or inversion.
References
Abdel-All, N.H., Abdel-Galil, E.: Numerical treatment of geodesic differential. In: International Mathematical Forum, vol. 8, pp. 15–29 (2013)
Chen, W.W., Kotz, S.: The riemannian structure of the three-parameter gamma distribution (2013)
Cont, A., Dubnov, S., Assayag, G.: On the information geometry of audio streams with applications to similarity computing. IEEE Trans. Audio Speech Lang. Process. 19, 837–846 (2010)
del Pozo, I., Gómez, F.: Formalization of voice-leadings and the Nabla algorithm. In: Montiel, M., Gomez-Martin, F., Agustín-Aquino, O.A. (eds.) MCM 2019. LNCS (LNAI), vol. 11502, pp. 352–358. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21392-3_30
Desobry, F., Davy, M., Doncarli, C.: An online kernel change detection algorithm. IEEE Trans. Signal Process. 53, 2961–2974 (2005)
Gethner, S.S.E., Verbeke, J.: A view of music. In: Delp, D.M.K., Kaplan, C.S., Sarhangi, R. (eds.) Proceedings of Bridges 2015: Mathematics, Music, Art, Architecture, Culture, Phoenix, Arizona, Tessellations Publishing, pp. 289–294 (2015). http://archive.bridgesmathart.org/2015/bridges2015-289.html
Fishman, Y.I., et al.: Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans. J. Neurophysiol. 86, 2761–2788 (2001)
Foote, J.T., Cooper, M.L.: Media segmentation using self-similarity decomposition. In: Storage and Retrieval for Media Databases, vol. 5021, pp. 167–175. International Society for Optics and Photonics (2003)
Gimeno, P., Mingote, V., Giménez, A.O., Miguel, A., Lleida, E.: Partial auc optimisation using recurrent neural networks for music detection with limited training data. In: Interspeech, pp. 3067–3071 (2020)
Gururani, S., Summers, C., Lerch, A.: Instrument activity detection in polyphonic music using deep neural networks. In: ISMIR, pp. 569–576 (2018)
Gustafsson, F.: The marginalized likelihood ratio test for detecting abrupt changes. IEEE Trans. Autom. Control 41, 66–78 (1996)
Hamel, P., Eck, D.: Learning features from music audio with deep belief networks. In: ISMIR, vol. 10, pp. 339–344. Citeseer (2010)
Harte, C., Sandler, M., Gasser, M.: Detecting harmonic change in musical audio. In: Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia, pp. 21–26 (2006)
Kataoka, M., Kinouchi, M., Hagiwara, M.: Music information retrieval system using complex-valued recurrent neural networks. In: SMC’98 Conference Proceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), vol. 5, pp. 4290–4295. IEEE (1998)
Meléndez-Catalán, B., Molina, E., Gomez, E.: Music and/or speech detection mirex 2018 submission, music information retrieval evaluation eX-change (2018)
Mesaros, A., Heittola, T., Virtanen, T.: Tut acoustic scenes 2017, evaluation dataset (2017)
Moore, B.C., Glasberg, B.R.: Suggested formulae for calculating auditory-filter bandwidths and excitation patterns. J. Acoust. Soc. Am. 74, 750–753 (1983)
Nordmark, J., Fahlén, L.E.: Beat theories of musical consonance. Q. Prog. Status Rep. 29, 111–122 (1988)
Panda, R., Malheiro, R.M., Paiva, R.P.: Audio features for music emotion recognition: a survey, IEEE Trans. Affect. Comput. (2020)
Schedl, M., Gutiérrez, E.G., Urbano, J.: Music information retrieval: recent developments and applications. Found. Trends Inf. Retrieval. 8(2–3), 127–261 (2014)
Steinmetz, S., Sonic imagery: a view of music via mathematical computer science and signal processing. University of Colorado at Denver (2016)
Steinmetz, S., Gethner, E.: On musical information geometry with applications to sonified image analysis. In: To Appear in International Conference on Pattern Recognition and Image Processing, Miami (2021)
Tymoczko, D.: A Geometry of Music, Oxford University Press, Oxford, 1 (ed.) (2011)
Zhang, X.: Gtzan, November 2019
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Steinmetz, S., Gethner, E. (2022). Information Synthesis of Time-Geometry QCurve for Music Retrieval. In: Montiel, M., Agustín-Aquino, O.A., Gómez, F., Kastine, J., Lluis-Puebla, E., Milam, B. (eds) Mathematics and Computation in Music. MCM 2022. Lecture Notes in Computer Science(), vol 13267. Springer, Cham. https://doi.org/10.1007/978-3-031-07015-0_36
Download citation
DOI: https://doi.org/10.1007/978-3-031-07015-0_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-07014-3
Online ISBN: 978-3-031-07015-0
eBook Packages: Computer ScienceComputer Science (R0)