Abstract
We formally define polynomial packing methods and initiate a unified study of related concepts in various contexts of cryptography. This includes homomorphic encryption (HE) packing and reverse multiplication-friendly embedding (RMFE) in information-theoretically secure multi-party computation (MPC). We prove several upper bounds and impossibility results on packing methods for \(\mathbb {Z}_{p^k}\) or \(\mathbb {F}_{p^k}\)-messages into \(\mathbb {Z}_{p^t}[x]/f(x)\) in terms of (i) packing density, (ii) level-consistency, and (iii) surjectivity. These results have implications on recent development of HE-based MPC over \(\mathbb {Z}_{2^k}\) secure against actively corrupted majority and provide new proofs for upper bounds on RMFE.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Chinese Remainder Theorem.
- 2.
Single Instruction, Multiple Data.
- 3.
- 4.
Indeed, the number of evaluation points is bounded by the size of the field.
- 5.
Zero-knowledge proof of message knowledge.
- 6.
Nonetheless, this object was also previously studied in [2] to amortize oblivious linear evaluations (OLE) into a larger extension field for correlation extraction problem in MPC. However, their construction achieved only sublinear density.
- 7.
- 8.
In a sense that any element of \({\mathcal R}\) could be an image of \({\textsf {{Pack}}}_1(\cdot )\).
- 9.
References
Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: a more efficient ZKPoK for SPDZ. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol. 11959, pp. 274–302. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38471-5_12
Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation based on leaky correlations: high resilience setting. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 3–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63715-0_1
Block, A.R., Maji, H.K., Nguyen, H.H.: Secure computation with constant communication overhead using multiplication embeddings. In: Chakraborty, D., Iwata, T. (eds.) INDOCRYPT 2018. LNCS, vol. 11356, pp. 375–398. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-05378-9_20
Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Conference, pp. 309–325 (2012)
Cascudo, I., Cramer, R., Xing, C., Yuan, C.: Amortized complexity of information-theoretically secure MPC revisited. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 395–426. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_14
Cascudo, I., Giunta, E.: On interactive oracle proofs for Boolean R1CS statements. Cryptology ePrint Archive, Report 2021/694 (2021)
Cascudo, I., Gundersen, J.S.: A secret-sharing based MPC protocol for Boolean circuits with good amortized complexity. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 652–682. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_23
Castryck, W., Iliashenko, I., Vercauteren, F.: Homomorphic SIM\(^2\)D operations: single instruction much more data. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 338–359. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_13
Chen, H., Han, K.: Homomorphic lower digits removal and improved FHE bootstrapping. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10820, pp. 315–337. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78381-9_12
Chen, H., Laine, K., Player, R., Xia, Y.: High-precision arithmetic in homomorphic encryption. In: Smart, N.P. (ed.) CT-RSA 2018. LNCS, vol. 10808, pp. 116–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76953-0_7
Cheon, J.H., Jeong, J., Lee, J., Lee, K.: Privacy-preserving computations of predictive medical models with minimax approximation and non-adjacent form. In: Brenner, M., et al. (eds.) FC 2017. LNCS, vol. 10323, pp. 53–74. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70278-0_4
Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. LNCS, vol. 10624, pp. 409–437. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70694-8_15
Cheon, J.H., Kim, D., Lee, K.: MHz2k: MPC from HE over \(\mathbb{Z}_{2^k}\) with new packing, simpler Reshare, and better ZKP. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12826, pp. 426–456. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84245-1_15
Cheon, J.H., Lee, K.: Limits of polynomial packings for \(\mathbb{Z}_{p^k}\) and \(\mathbb{F}_{p^k}\). Cryptology ePrint Archive, Report 2021/1033 (2021)
Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SPD\(\mathbb{Z}_{2^k}\): efficient MPC mod \(2^k\) for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_26
Cramer, R., Rambaud, M., Xing, C.: Asymptotically-good arithmetic secret sharing over \(\mathbb{Z}/p^{\ell }\mathbb{Z}\) with strong multiplication and its applications to efficient MPC. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 656–686. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_22
Cramer, R., Xing, C., Yuan, C.: On the complexity of arithmetic secret sharing. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 444–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_16
Dalskov, A., Lee, E., Soria-Vazquez, E.: Circuit amortization friendly encodings and their application to statistically secure multiparty computation. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 213–243. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_8
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgård, I., Larsen, K.G., Nielsen, J.B.: Communication lower bounds for statistically secure MPC, with or without preprocessing. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp. 61–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7_3
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive, Report 2012/144 (2012)
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing, pp. 169–178 (2009)
Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homomorphic encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 1–16. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30057-8_1
Halevi, S., Shoup, V.: Helib. Retrieved from HELib (2014). https://github.com.homenc/HElib
Halevi, S., Shoup, V.: Bootstrapping for HElib. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 641–670. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_25
Keller, M., Pastro, V., Rotaru, D.: Overdrive: making SPDZ great again. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 158–189. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_6
Kim, A., Song, Y., Kim, M., Lee, K., Cheon, J.H.: Logistic regression model training based on the approximate homomorphic encryption. BMC Med. Genomics 11(4), 23–31 (2018)
Lipmaa, H.: Progression-free sets and sublinear pairing-based non-interactive zero-knowledge arguments. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 169–189. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_10
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Orsini, E., Smart, N.P., Vercauteren, F.: Overdrive2k: efficient secure MPC over \(\mathbb{Z}_{2^k}\) from somewhat homomorphic encryption. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 254–283. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_12
Polychroniadou, A., Song, Y.: Constant-overhead unconditionally secure multiparty computation over binary fields. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 812–841. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_28
Smart, N.P., Vercauteren, F.: Fully homomorphic encryption with relatively small key and ciphertext sizes. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 420–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13013-7_25
Smart, N.P., Vercauteren, F.: Fully homomorphic SIMD operations. Des. Codes Cryptogr. 71(1), 57–81 (2014). https://doi.org/10.1007/s10623-012-9720-4
Acknowledgement
The authors thank Dongwoo Kim for insightful discussions on packing methods, Donggeon Yhee for discussions on Proposition 7, and Minki Hhan for constructive comments on an earlier version of this work. The authors also thank the reviewers of Eurocrypt 2022 who provided thoughtful suggestions to improve the earlier version of this paper. This work was supported by Institute of Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2020-0-00840, Development and Library Implementation of Fully Homomorphic Machine Learning Algorithms supporting Neural Network Learning over Encrypted Data).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 International Association for Cryptologic Research
About this paper
Cite this paper
Cheon, J.H., Lee, K. (2022). Limits of Polynomial Packings for \(\mathbb {Z}_{p^k}\) and \(\mathbb {F}_{p^k}\). In: Dunkelman, O., Dziembowski, S. (eds) Advances in Cryptology – EUROCRYPT 2022. EUROCRYPT 2022. Lecture Notes in Computer Science, vol 13275. Springer, Cham. https://doi.org/10.1007/978-3-031-06944-4_18
Download citation
DOI: https://doi.org/10.1007/978-3-031-06944-4_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06943-7
Online ISBN: 978-3-031-06944-4
eBook Packages: Computer ScienceComputer Science (R0)