Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Fair Evaluation of Various Deep Learning-Based Document Image Binarization Approaches

  • Conference paper
  • First Online:
Document Analysis Systems (DAS 2022)

Abstract

Binarization of document images is an important pre-processing step in the field of document analysis. Traditional image binarization techniques usually rely on histograms or local statistics to identify a valid threshold to differentiate between different aspects of the image. Deep learning techniques are able to generate binarized versions of the images by learning context-dependent features that are less error-prone to degradation typically occurring in document images. In recent years, many deep learning-based methods have been developed for document binarization. But which one to choose? There have been no studies that compare these methods rigorously. Therefore, this work focuses on the evaluation of different deep learning-based methods under the same evaluation protocol. We evaluate them on different Document Image Binarization Contest (DIBCO) datasets and obtain very heterogeneous results. We show that the DE-GAN model was able to perform better compared to other models when evaluated on the DIBCO2013 dataset while DP-LinkNet performed best on the DIBCO2017 dataset. The 2-StageGAN performed best on the DIBCO2018 dataset while SauvolaNet outperformed the others on the DIBCO2019 challenge. Finally, we make the code, all models and evaluation publicly available (https://github.com/RichSu95/Document_Binarization_Collection) to ensure reproducibility and simplify future binarization evaluations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akiba, T., Sano, S., Yanase, T., Ohta, T., Koyama, M.: Optuna: a next-generation hyperparameter optimization framework. In: 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD 2019, pp. 2623–2631. Association for Computing Machinery, New York, NY, USA (2019)

    Google Scholar 

  2. Calvo-Zaragoza, J., Gallego, A.J.: A selectional auto-encoder approach for document image binarization. Pattern Recogn. 86, 37–47 (2019)

    Article  Google Scholar 

  3. Chaurasia, A., Culurciello, E.: LinkNet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2017)

    Google Scholar 

  4. Christlein, V., Bernecker, D., Hönig, F., Maier, A., Angelopoulou, E.: Writer identification using GMM supervectors and exemplar-SVMs. Pattern Recogn. 63, 258–267 (2017)

    Article  Google Scholar 

  5. Christlein, V., Gropp, M., Fiel, S., Maier, A.: Unsupervised feature learning for writer identification and writer retrieval. In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 991–997 (2017)

    Google Scholar 

  6. Gatos, B., Ntirogiannis, K., Pratikakis, I.: ICDAR 2009 document image binarization contest (DIBCO 2009). In: 2009 10th International Conference on Document Analysis and Recognition, pp. 1375–1382 (2009)

    Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Teh, Y.W., Titterington, M. (eds.) Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics. Proceedings of Machine Learning Research, 13–15 May 2010, vol. 9, pp. 249–256. PMLR, Chia Laguna Resort, Sardinia, Italy (2010)

    Google Scholar 

  8. He, S., Schomaker, L.: DeepOtsu: document enhancement and binarization using iterative deep learning. Pattern Recogn. 91, 379–390 (2019)

    Article  Google Scholar 

  9. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976 (2017)

    Google Scholar 

  10. Li, D., Wu, Y., Zhou, Y.: SauvolaNet: learning adaptive Sauvola network for degraded document binarization. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 538–553. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_36

    Chapter  Google Scholar 

  11. Lins, R.D., Bernardino, R.B., Smith, E.B., Kavallieratou, E.: ICDAR 2021 competition on time-quality document image binarization. In: Lladós, J., Lopresti, D., Uchida, S. (eds.) ICDAR 2021. LNCS, vol. 12824, pp. 708–722. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-86337-1_47

    Chapter  Google Scholar 

  12. Maas, A.L.: Rectifier nonlinearities improve neural network acoustic models (2013)

    Google Scholar 

  13. Masyagin, M.: Robust document image binarization. https://github.com/masyagin1998/robin. Accessed 1 Apr 2022

  14. Monteiro Silva, A.C., Hirata, N.S.T., Jiang, X.: Skeletal similarity based structural performance evaluation for document binarization. In: 2020 17th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 37–42 (2020)

    Google Scholar 

  15. Mustafa, W.A., Kader, M.M.M.A.: Binarization of document images: a comprehensive review. J. Phys.: Conf. Ser. 1019, 012023 (2018)

    Google Scholar 

  16. Ntirogiannis, K., Gatos, B., Pratikakis, I.: ICFHR 2014 competition on handwritten document image binarization (H-DIBCO 2014). In: 2014 14th International Conference on Frontiers in Handwriting Recognition, pp. 809–813 (2014)

    Google Scholar 

  17. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  18. Pratikakis, I., Gatos, B., Ntirogiannis, K.: H-DIBCO 2010 - handwritten document image binarization competition. In: 2010 12th International Conference on Frontiers in Handwriting Recognition, pp. 727–732 (2010)

    Google Scholar 

  19. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2011 document image binarization contest (DIBCO 2011). In: 2011 International Conference on Document Analysis and Recognition, pp. 1506–1510 (2011)

    Google Scholar 

  20. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICFHR 2012 competition on handwritten document image binarization (H-DIBCO 2012). In: 2012 International Conference on Frontiers in Handwriting Recognition, pp. 817–822 (2012)

    Google Scholar 

  21. Pratikakis, I., Gatos, B., Ntirogiannis, K.: ICDAR 2013 document image binarization contest (DIBCO 2013). In: 2013 12th International Conference on Document Analysis and Recognition, pp. 1471–1476 (2013)

    Google Scholar 

  22. Pratikakis, I., Zagori, K., Kaddas, P., Gatos, B.: ICFHR 2018 competition on handwritten document image binarization (H-DIBCO 2018). In: 2018 16th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 489–493 (2018)

    Google Scholar 

  23. Pratikakis, I., Zagoris, K., Barlas, G., Gatos, B.: ICFHR 2016 handwritten document image binarization contest (H-DIBCO 2016). In: 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), pp. 619–623 (2016)

    Google Scholar 

  24. Pratikakis, I., Zagoris, K., Barlas, G., Gatos, B.: ICDAR 2017 competition on document image binarization (DIBCO 2017). In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 01, pp. 1395–1403 (2017)

    Google Scholar 

  25. Pratikakis, I., Zagoris, K., Karagiannis, X., Tsochatzidis, L., Mondal, T., Marthot-Santaniello, I.: ICDAR 2019 competition on document image binarization (DIBCO 2019). In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 1547–1556 (2019)

    Google Scholar 

  26. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  27. Sauvola, J., Pietikäinen, M.: Adaptive document image binarization. Pattern Recogn. 33(2), 225–236 (2000)

    Article  Google Scholar 

  28. Souibgui, M.A., Kessentini, Y.: DE-GAN: a conditional generative adversarial network for document enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 44(3), 1180–1191 (2022)

    Article  Google Scholar 

  29. Suh, S., Kim, J., Lukowicz, P., Lee, Y.O.: Two-stage generative adversarial networks for document image binarization with color noise and background removal. CoRR abs/2010.10103 (2020). https://arxiv.org/abs/2010.10103

  30. Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: Chaudhuri, K., Salakhutdinov, R. (eds.) Proceedings of the 36th International Conference on Machine Learning. Proceedings of Machine Learning Research, 09–15 June 2019, vol. 97, pp. 6105–6114. PMLR (2019)

    Google Scholar 

  31. Tensmeyer, C., Martinez, T.: Historical document image binarization: a review. SN Comput. Sci. 1(3), 1–26 (2020). https://doi.org/10.1007/s42979-020-00176-1

    Article  Google Scholar 

  32. Xiong, W., Jia, X., Yang, D., Ai, M., et al.: DP-LinkNet: a convolutional network for historical document image binarization. KSII Trans. Internet Inf. Syst. 15(5), 1778–1797 (2021)

    Google Scholar 

  33. Zhou, L., Zhang, C., Wu, M.: D-LinkNet: LinkNet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 192–1924 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Seuret .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sukesh, R., Seuret, M., Nicolaou, A., Mayr, M., Christlein, V. (2022). A Fair Evaluation of Various Deep Learning-Based Document Image Binarization Approaches. In: Uchida, S., Barney, E., Eglin, V. (eds) Document Analysis Systems. DAS 2022. Lecture Notes in Computer Science, vol 13237. Springer, Cham. https://doi.org/10.1007/978-3-031-06555-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06555-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06554-5

  • Online ISBN: 978-3-031-06555-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics