Nothing Special   »   [go: up one dir, main page]

Skip to main content

Multi-Agent Systems in Support of Digital Twins: A Survey

  • Conference paper
  • First Online:
Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence (IWINAC 2022)

Abstract

The joint use of technologies such as IoT, Artificial Intelligence, Cloud Computing or Virtualization has fostered the development of digital twins (DT). A DT is described as a physical entity, its virtual counterpart and the data connections between both. Digital twins are increasingly being used to enrich physical entities by exploiting different computational approaches, which are applied to the virtual twin part. One of such approaches is the multi-agent systems (MAS) paradigm. It is claimed they resemble DT in many features. In order to analyse the suitability of MAS for DT, this paper presents the results of a systematic literature review focused on the analysis of current proposals exploiting MAS to support the design of digital twins. We found that the integrating the multi-agent paradigm with digital twins can be challenging, because the distinction among them is sometimes blurry. Moreover, it has been detected that MAS are generally the interaction environment for the DTs, and data of the DTs allow agents’ better decisions to be made in real time. That is, the massive volume of data stored by the DT allows agents to make decisions based on these data, and on the other hand, MAS shapes the environment where the DTs operate and interact.

This paper is part of the R+D+i project PID2019-108915RB-I00 funded by MCIN/AEI/10.13039/501100011033.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakliwal, K., Dhada, M.H., Palau, A.S., Parlikad, A.K., Lad, B.K.: A multi agent system architecture to implement collaborative learning for social industrial assets. IFAC-PapersOnLine 51(11), 1237–1242 (2018)

    Article  Google Scholar 

  2. Barricelli, B.R., Casiraghi, E., Fogli, D.: A survey on digital twin: definitions, characteristics, applications, and design implications. IEEE Access 7, 167653–167671 (2019)

    Article  Google Scholar 

  3. Borangiu, T., Morariu, O., Răileanu, S., Trentesaux, D., Leitão, P., Barata, J.: Digital transformation of manufacturing. Industry of the future with cyber-physical production systems. Roman J. Inf. Sci. Technol. 23(1), 3–37 (2020)

    Google Scholar 

  4. Bremer, J., Gerster, J., Brückner, B., Sarstedt, M., Lehnhoff, S., Hofmann, L.: Agent-based phase space sampling of ensembles using Ripley’s K for homogeneity. In: De La Prieta, F., El Bolock, A., Durães, D., Carneiro, J., Lopes, F., Julian, V. (eds.) PAAMS Workshops 2021. CCIS, vol. 1472, pp. 191–202. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-85710-3_16

    Chapter  Google Scholar 

  5. Clark, T., Barn, B., Kulkarni, V., Barat, S.: Language support for multi agent reinforcement learning. In: Proceedings of the 13th Innovations in Software Engineering Conference on Formerly known as India Software Engineering Conference, pp. 1–12. ACM, New York, NY, USA, February 2020

    Google Scholar 

  6. Croatti, A., Gabellini, M., Montagna, S., Ricci, A.: On the integration of agents and digital twins in healthcare. J. Med. Syst. 44(9), 1–8 (2020). https://doi.org/10.1007/s10916-020-01623-5

    Article  Google Scholar 

  7. Dorri, A., Kanhere, S.S., Jurdak, R.: Multi-agent systems: a survey. IEEE Access 6, 28573–28593 (2018)

    Article  Google Scholar 

  8. Errandonea, I., Beltrán, S., Arrizabalaga, S.: Digital twin for maintenance: a literature review. Comput. Ind. 123, 103316 (2020)

    Article  Google Scholar 

  9. Gartner: Gartner Top 10 Strategic Technology Trends for 2019. Technical report (2019). https://www.gartner.com/smarterwithgartner/gartner-top-10-strategic-technology-trends-for-2019

  10. Gorodetsky, V.I., Kozhevnikov, S.S., Novichkov, D., Skobelev, P.O.: The framework for designing autonomous cyber-physical multi-agent systems for adaptive resource management. In: Mařík, V., et al. (eds.) HoloMAS 2019. LNCS (LNAI), vol. 11710, pp. 52–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27878-6_5

    Chapter  Google Scholar 

  11. Grieves, M., Vickers, J.: Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen, F.-J., Flumerfelt, S., Alves, A. (eds.) Transdisciplinary Perspectives on Complex Systems, pp. 85–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-38756-7_4

    Chapter  Google Scholar 

  12. Hafez, W.: Human digital twin: enabling human-multi smart machines collaboration. Adv. Intell. Syst. Comput. 1038, 981–993 (2020)

    Google Scholar 

  13. Havard, V., Sahnoun, M., Bettayeb, B., Duval, F., Baudry, D.: Data architecture and model design for Industry 4.0 components integration in cyber-physical production systems. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 235(14), 2338–2349 (2021)

    Google Scholar 

  14. Jones, D., Snider, C., Nassehi, A., Yon, J., Hicks, B.: Characterising the digital twin: a systematic literature review. CIRP J. Manuf. Sci. Technol. 29, 36–52 (2020)

    Article  Google Scholar 

  15. Jung, T., Shah, P., Weyrich, M.: Dynamic co-simulation of Internet-of-Things-components using a multi-agent-system. Procedia CIRP 72, 874–879 (2018)

    Article  Google Scholar 

  16. Jung, Y., Han, C., Lee, D., Song, S., Jang, G.: Adaptive volt-var control in smart PV inverter for mitigating voltage unbalance at PCC using multiagent deep reinforcement learning. Appl. Sci. 11(19), 8979 (2021)

    Article  Google Scholar 

  17. Kazakov, V.V., et al.: Personal digital twins and their socio-morphic networks: current research trends and possibilities of the approach. CEUR Workshop Proc. 2569(February), 29–34 (2020)

    Google Scholar 

  18. Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., Linkman, S.: Systematic literature reviews in software engineering - a systematic literature review. Inf. Softw. Technol. 51(1), 7–15 (2009)

    Article  Google Scholar 

  19. Kostromin, R., Feoktistov, A.: Agent-based DevOps of software and hardware resources for digital twins of infrastructural objects. In: The 4th International Conference on Future Networks and Distributed Systems (ICFNDS), pp. 1–6. ACM, New York, NY, USA, November 2020

    Google Scholar 

  20. Laryukhin, V., Skobelev, P., Lakhin, O., Grachev, S., Yalovenko, V., Yalovenko, O.: Towards developing a cyber-physical multi-agent system for managing precise farms with digital twins of plants. Cybern. Phys. 8(4), 257–261 (2019)

    Article  Google Scholar 

  21. Latsou, C., Farsi, M., Erkoyuncu, J.A., Morris, G.: Digital twin integration in multi-agent cyber physical manufacturing systems. IFAC-PapersOnLine 54(1), 811–816 (2021)

    Article  Google Scholar 

  22. Liu, X., Yu, S., Li, Q., Zheng, L., Wang, X., Sun, H., Wang, F.: MAS-based parallel intelligence communities. In: 2021 IEEE 1st International Conference on Digital Twins and Parallel Intelligence (DTPI), pp. 426–429. IEEE, July 2021

    Google Scholar 

  23. Liu, Y., et al.: A novel cloud-based framework for the elderly healthcare services using digital twin. IEEE Access 7, 49088–49101 (2019)

    Article  Google Scholar 

  24. Massel, L.V., Massel, A.G.: Development of digital twins and digital shadows of energy objects and systems using scientific tools for energy research. E3S Web of Conf. 209, 02019 (2020)

    Google Scholar 

  25. Minerva, R., Lee, G.M., Crespi, N.: Digital twin in the IoT context: a survey on technical features, scenarios, and architectural models. Proc. IEEE 108(10), 1785–1824 (2020)

    Article  Google Scholar 

  26. Niati, A., Selma, C., Tamzalit, D., Bruneliere, H., Mebarki, N., Cardin, O.: Towards a digital twin for cyber-physical production systems. In: Proceedings of the 23rd ACM/IEEE International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, pp. 1–7. ACM, New York, NY, USA, October 2020

    Google Scholar 

  27. Ocker, F., Urban, C., Vogel-Heuser, B., Diedrich, C.: Leveraging the asset administration shell for agent-based production systems. IFAC-PapersOnLine 54(1), 837–844 (2021)

    Article  Google Scholar 

  28. Park, K.T., Son, Y.H., Noh, S.D.: The architectural framework of a cyber physical logistics system for digital-twin-based supply chain control. Int. J. Prod. Res. 59(19), 5721–5742 (2021)

    Article  Google Scholar 

  29. Ramesh, A., Qin, Z., Lu, Y.: Digital thread enabled manufacturing automation towards mass personalization. In: Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability. American Society of Mechanical Engineers, September 2020

    Google Scholar 

  30. Roda, C., Rodríguez, A.C., López-Jaquero, V., Navarro, E., González, P.: A multi-agent system for acquired brain injury rehabilitation in ambient intelligence environments. Neurocomputing 231, 11–18 (2017)

    Article  Google Scholar 

  31. Roque Rolo, G., Dionisio Rocha, A., Tripa, J., Barata, J.: Application of a simulation-based digital twin for predicting distributed manufacturing control system performance. Appl. Sci. 11(5), 2202 (2021)

    Article  Google Scholar 

  32. Singh, M., Fuenmayor, E., Hinchy, E.P., Qiao, Y., Murray, N., Devine, D.: Digital twin: origin to future. Appl. Syst. Innov. 4(2), 36 (2021)

    Article  Google Scholar 

  33. Skobelev, P.O., et al.: Development of models and methods for creating a digital twin of plant within the cyber-physical system for precision farming management. J. Phys. Conf. Ser. 1703(1), 012022 (2020)

    Article  Google Scholar 

  34. Skobelev, P., Laryukhin, V., Simonova, E., Goryanin, O., Yalovenko, V., Yalovenko, O.: Developing a smart cyber-physical system based on digital twins of plants. In: 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pp. 522–527. IEEE, July 2020

    Google Scholar 

  35. Skobelev, P., Laryukhin, V., Simonova, E., Goryanin, O., Yalovenko, V., Yalovenko, O.: Multi-agent approach for developing a digital twin of wheat. In: 2020 IEEE International Conference on Smart Computing (SMARTCOMP), pp. 268–273. IEEE, September 2020

    Google Scholar 

  36. Temkin, I., Myaskov, A., Deryabin, S., Konov, I., Ivannikov, A.: Design of a digital 3D model of transport-technological environment of open-pit mines based on the common use of telemetric and geospatial information. Sensors 21(18), 6277 (2021)

    Article  Google Scholar 

  37. Wan, H., David, M., Derigent, W.: Design of a multi-agent system for exploiting the communicating concrete in a SHM/BIM context. IFAC-PapersOnLine 53(3), 372–379 (2020)

    Article  Google Scholar 

  38. Wan, H., David, M., Derigent, W.: Modelling digital twins as a recursive multi-agent architecture: application to energy management of communicating materials. IFAC-PapersOnLine 54(1), 880–885 (2021)

    Article  Google Scholar 

  39. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems. ACM Trans. Softw. Eng. Methodol. 12(3), 317–370 (2003)

    Article  Google Scholar 

  40. Zheng, X., Psarommatis, F., Petrali, P., Turrin, C., Lu, J., Kiritsis, D.: A quality-oriented digital twin modelling method for manufacturing processes based on a multi-agent architecture. Procedia Manuf. 51, 309–315 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pretel, E., Navarro, E., López-Jaquero, V., Moya, A., González, P. (2022). Multi-Agent Systems in Support of Digital Twins: A Survey. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Bio-inspired Systems and Applications: from Robotics to Ambient Intelligence. IWINAC 2022. Lecture Notes in Computer Science, vol 13259. Springer, Cham. https://doi.org/10.1007/978-3-031-06527-9_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06527-9_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06526-2

  • Online ISBN: 978-3-031-06527-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics