Abstract
Foreground detection is the task of labelling the foreground or background pixels in the video sequence and it depends on the context of the scene. For many years, methods based on background model have been the most used approaches for detecting foreground; however, their methods are sensitive to error propagation from the first background model estimations. To address this problem, we proposed a U-net based architecture with an attention module, where the encoding of the entire video sequence is used as attention context to get features related to the background model. We tested our network on sixteen scenes from the CDnet2014 dataset, with an average F-measure of 88.42. The results also show that our model outperforms traditional and neural networks methods. Thus, we demonstrated that an attention module on a U-net based architecture can deal with the foreground detection challenges.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akilan, T., Wu, Q.J., Safaei, A., Huo, J., Yang, Y.: A 3D CNN-LSTM-based image-to-image foreground segmentation. IEEE Trans. Intell. Transp. Syst. 21(3), 959–971 (2019)
Akilan, T., Wu, Q.J.: sEnDec: an improved image to image CNN for foreground localization. IEEE Trans. Intell. Transp. Syst. 21(10), 4435–4443 (2019)
Akilan, T., Wu, Q.J., Yang, Y.: Fusion-based foreground enhancement for background subtraction using multivariate multi-model gaussian distribution. Inf. Sci. 430, 414–431 (2018)
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Babaee, M., Dinh, D.T., Rigoll, G.: A deep convolutional neural network for video sequence background subtraction. Pattern Recognit. 76, 635–649 (2018)
Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Flores-Benites, V., Mugruza-Vassallo, C.A., Mora-Colque, R.: TVAnet: a spatial and feature-based attention model for self-driving car. In: 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 263–270. IEEE (2021)
Fratama, R.R., Partiningsih, N.D.A., Rachmawanto, E.H., Sari, C.A., Andono, P.N., et al.: Real-time multiple vehicle counter using background subtraction for traffic monitoring system. In: 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 1–5. IEEE (2019)
Gao, Y., Cai, H., Zhang, X., Lan, L., Luo, Z.: Background subtraction via 3D convolutional neural networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1271–1276. IEEE (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hema, C.: Hand gesture identification using preprocessing, background subtraction and segmentation techniques. Int. J. Appl. Eng. Res. 11(5), 3221–3228 (2016)
Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 38–43. IEEE (2012)
Huynh-The, T., Banos, O., Lee, S., Kang, B.H., Kim, E.S., Le-Tien, T.: NIC: a robust background extraction algorithm for foreground detection in dynamic scenes. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1478–1490 (2016)
Kim, J.Y., Ha, J.E.: Foreground objects detection by U-Net with multiple difference images. Appl. Sci. 11(4), 1807 (2021)
Kim, J.Y., Ha, J.E.: Spatio-temporal data augmentation for visual surveillance. arXiv preprint arXiv:2101.09895 (2021)
Lim, L.A., Keles, H.Y.: Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recognit. Lett. 112, 256–262 (2018)
Patil, P.W., Biradar, K.M., Dudhane, A., Murala, S.: An end-to-end edge aggregation network for moving object segmentation. In: proceedings of the IEEE/CVF Conference on computer Vision and Pattern Recognition, pp. 8149–8158 (2020)
Patil, P.W., Dudhane, A., Murala, S.: Multi-frame recurrent adversarial network for moving object segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2302–2311 (2021)
Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), vol. 4, pp. 3099–3104. IEEE (2004)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sajid, H., Cheung, S.C.S.: Universal multimode background subtraction. IEEE Trans. Image Process. 26(7), 3249–3260 (2017)
Tarafdar, A., Roy, S., Mondal, A., Sen, R., Adhikari, A.: Image segmentation using background subtraction on colored images. In: 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), pp. 1–4. IEEE (2019)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers and distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 387–394 (2014)
Wu, L., Huang, K., Shen, H., Gao, L.: A foreground-background parallel compression with residual encoding for surveillance video (2020)
Yang, L., Li, J., Luo, Y., Zhao, Y., Cheng, H., Li, J.: Deep background modeling using fully convolutional network. IEEE Trans. Intell. Transp. Syst. 19(1), 254–262 (2017)
Zhang, Y., et al.: VidTr: video transformer without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13577–13587 (2021)
Zou, W., Bai, C., Kpalma, K., Ronsin, J.: Online glocal transfer for automatic figure-ground segmentation. IEEE Trans. Image Process. 23(5), 2109–2121 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Benavides-Arce, A.A., Flores-Benites, V., Mora-Colque, R. (2022). Foreground Detection Using an Attention Module and a Video Encoding. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-06433-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06432-6
Online ISBN: 978-3-031-06433-3
eBook Packages: Computer ScienceComputer Science (R0)