Nothing Special   »   [go: up one dir, main page]

Skip to main content

Foreground Detection Using an Attention Module and a Video Encoding

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Foreground detection is the task of labelling the foreground or background pixels in the video sequence and it depends on the context of the scene. For many years, methods based on background model have been the most used approaches for detecting foreground; however, their methods are sensitive to error propagation from the first background model estimations. To address this problem, we proposed a U-net based architecture with an attention module, where the encoding of the entire video sequence is used as attention context to get features related to the background model. We tested our network on sixteen scenes from the CDnet2014 dataset, with an average F-measure of 88.42. The results also show that our model outperforms traditional and neural networks methods. Thus, we demonstrated that an attention module on a U-net based architecture can deal with the foreground detection challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akilan, T., Wu, Q.J., Safaei, A., Huo, J., Yang, Y.: A 3D CNN-LSTM-based image-to-image foreground segmentation. IEEE Trans. Intell. Transp. Syst. 21(3), 959–971 (2019)

    Article  Google Scholar 

  2. Akilan, T., Wu, Q.J.: sEnDec: an improved image to image CNN for foreground localization. IEEE Trans. Intell. Transp. Syst. 21(10), 4435–4443 (2019)

    Article  Google Scholar 

  3. Akilan, T., Wu, Q.J., Yang, Y.: Fusion-based foreground enhancement for background subtraction using multivariate multi-model gaussian distribution. Inf. Sci. 430, 414–431 (2018)

    Article  Google Scholar 

  4. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  5. Babaee, M., Dinh, D.T., Rigoll, G.: A deep convolutional neural network for video sequence background subtraction. Pattern Recognit. 76, 635–649 (2018)

    Article  Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth \(16 \times 16\) words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Flores-Benites, V., Mugruza-Vassallo, C.A., Mora-Colque, R.: TVAnet: a spatial and feature-based attention model for self-driving car. In: 2021 34th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 263–270. IEEE (2021)

    Google Scholar 

  8. Fratama, R.R., Partiningsih, N.D.A., Rachmawanto, E.H., Sari, C.A., Andono, P.N., et al.: Real-time multiple vehicle counter using background subtraction for traffic monitoring system. In: 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), pp. 1–5. IEEE (2019)

    Google Scholar 

  9. Gao, Y., Cai, H., Zhang, X., Lan, L., Luo, Z.: Background subtraction via 3D convolutional neural networks. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 1271–1276. IEEE (2018)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Hema, C.: Hand gesture identification using preprocessing, background subtraction and segmentation techniques. Int. J. Appl. Eng. Res. 11(5), 3221–3228 (2016)

    Google Scholar 

  12. Hofmann, M., Tiefenbacher, P., Rigoll, G.: Background segmentation with feedback: the pixel-based adaptive segmenter. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 38–43. IEEE (2012)

    Google Scholar 

  13. Huynh-The, T., Banos, O., Lee, S., Kang, B.H., Kim, E.S., Le-Tien, T.: NIC: a robust background extraction algorithm for foreground detection in dynamic scenes. IEEE Trans. Circuits Syst. Video Technol. 27(7), 1478–1490 (2016)

    Article  Google Scholar 

  14. Kim, J.Y., Ha, J.E.: Foreground objects detection by U-Net with multiple difference images. Appl. Sci. 11(4), 1807 (2021)

    Article  Google Scholar 

  15. Kim, J.Y., Ha, J.E.: Spatio-temporal data augmentation for visual surveillance. arXiv preprint arXiv:2101.09895 (2021)

  16. Lim, L.A., Keles, H.Y.: Foreground segmentation using convolutional neural networks for multiscale feature encoding. Pattern Recognit. Lett. 112, 256–262 (2018)

    Article  Google Scholar 

  17. Patil, P.W., Biradar, K.M., Dudhane, A., Murala, S.: An end-to-end edge aggregation network for moving object segmentation. In: proceedings of the IEEE/CVF Conference on computer Vision and Pattern Recognition, pp. 8149–8158 (2020)

    Google Scholar 

  18. Patil, P.W., Dudhane, A., Murala, S.: Multi-frame recurrent adversarial network for moving object segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2302–2311 (2021)

    Google Scholar 

  19. Piccardi, M.: Background subtraction techniques: a review. In: 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No. 04CH37583), vol. 4, pp. 3099–3104. IEEE (2004)

    Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  21. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  22. Sajid, H., Cheung, S.C.S.: Universal multimode background subtraction. IEEE Trans. Image Process. 26(7), 3249–3260 (2017)

    Article  MathSciNet  Google Scholar 

  23. Tarafdar, A., Roy, S., Mondal, A., Sen, R., Adhikari, A.: Image segmentation using background subtraction on colored images. In: 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), pp. 1–4. IEEE (2019)

    Google Scholar 

  24. Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers and distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357. PMLR (2021)

    Google Scholar 

  25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  26. Wang, Y., Jodoin, P.M., Porikli, F., Konrad, J., Benezeth, Y., Ishwar, P.: CDnet 2014: an expanded change detection benchmark dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 387–394 (2014)

    Google Scholar 

  27. Wu, L., Huang, K., Shen, H., Gao, L.: A foreground-background parallel compression with residual encoding for surveillance video (2020)

    Google Scholar 

  28. Yang, L., Li, J., Luo, Y., Zhao, Y., Cheng, H., Li, J.: Deep background modeling using fully convolutional network. IEEE Trans. Intell. Transp. Syst. 19(1), 254–262 (2017)

    Article  Google Scholar 

  29. Zhang, Y., et al.: VidTr: video transformer without convolutions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13577–13587 (2021)

    Google Scholar 

  30. Zou, W., Bai, C., Kpalma, K., Ronsin, J.: Online glocal transfer for automatic figure-ground segmentation. IEEE Trans. Image Process. 23(5), 2109–2121 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony A. Benavides-Arce .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benavides-Arce, A.A., Flores-Benites, V., Mora-Colque, R. (2022). Foreground Detection Using an Attention Module and a Video Encoding. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13233. Springer, Cham. https://doi.org/10.1007/978-3-031-06433-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06433-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06432-6

  • Online ISBN: 978-3-031-06433-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics