Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Contrastive Distillation Approach for Incremental Semantic Segmentation in Aerial Images

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Abstract

Incremental learning represents a crucial task in aerial image processing, especially given the limited availability of large-scale annotated datasets. A major issue concerning current deep neural architectures is known as catastrophic forgetting, namely the inability to faithfully maintain past knowledge once a new set of data is provided for retraining. Over the years, several techniques have been proposed to mitigate this problem for image classification and object detection. However, only recently the focus has shifted towards more complex downstream tasks such as instance or semantic segmentation. Starting from incremental-class learning for semantic segmentation tasks, our goal is to adapt this strategy to the aerial domain, exploiting a peculiar feature that differentiates it from natural images, namely the orientation. In addition to the standard knowledge distillation approach, we propose a contrastive regularization, where any given input is compared with its augmented version (i.e. flipping and rotations) in order to minimize the difference between the segmentation features produced by both inputs. We show the effectiveness of our solution on the Potsdam dataset, outperforming the incremental baseline in every test (Code available at: https://github.com/edornd/contrastive-distillation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Audebert, N., Le Saux, B., Lefèvre, S.: Beyond RGB: very high resolution urban remote sensing with multimodal deep networks. ISPRS J. Phot. Rem. Sens. 140, 20–32 (2018)

    Article  Google Scholar 

  2. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. arXiv preprint arXiv:2006.09882 (2020)

  3. Cermelli, F., Mancini, M., Rota Bulò, S., Ricci, E., Caputo, B.: Modeling the background for incremental learning in semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, June 2020 (2020)

    Google Scholar 

  4. Chaitanya, K., Erdil, E., Karani, N., Konukoglu, E.: Contrastive learning of global and local features for medical image segmentation with limited annotations. In: Advances in Neural Information Processing System (2020)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)

    Article  Google Scholar 

  6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49

    Chapter  Google Scholar 

  7. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  8. Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: ResUNet-a: a deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogram. Rem. Sens. 162, 94–114 (2020)

    Article  Google Scholar 

  9. Feng, Y., Sun, X., Diao, W., Li, J., Gao, X., Fu, K.: Continual learning with structured inheritance for semantic segmentation in aerial imagery. IEEE Trans. Geosci. Rem. Sens. 60, 1–17 (2021)

    Google Scholar 

  10. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  11. Khosla, P., et al.: Supervised contrastive learning. In: Advances in Neural Information Processing System, vol. 33, pp. 18661–18673 (2020)

    Google Scholar 

  12. Li, Z., Hoiem, D.: Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2935–2947 (2017)

    Article  Google Scholar 

  13. Loghmani, M.R., Robbiano, L., Planamente, M., Park, K., Caputo, B., Vincze, M.: Unsupervised domain adaptation through inter-modal rotation for RGB-D object recognition. IEEE Robot. Autom. Lett. 5(4), 6631–6638 (2020). https://doi.org/10.1109/LRA.2020.3007092

    Article  Google Scholar 

  14. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  15. Mallya, A., Lazebnik, S.: PackNet: adding multiple tasks to a single network by iterative pruning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2018, pp. 7765–7773 (2018). https://doi.org/10.1109/CVPR.2018.00810

  16. McCloskey, M., Cohen, N.J.: Catastrophic interference in connectionist networks: the sequential learning problem. Psych. Learn. Motiv. 24, 109–165 (1989)

    Article  Google Scholar 

  17. Misra, I., van der Maaten, L.: Self-supervised learning of pretext-invariant representations. In: IEEE Conference on Computer Vision and Pattern Recognition, June 2020 (2020)

    Google Scholar 

  18. Nogueira, K., Dalla Mura, M., Chanussot, J., Schwartz, W.R., dos Santos, J.A.: Learning to semantically segment high-resolution remote sensing images. In: International Conference on Pattern Recognition, pp. 3566–3571 (2016)

    Google Scholar 

  19. Noroozi, M., Favaro, P.: Unsupervised learning of visual representations by solving jigsaw puzzles. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 69–84. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_5

    Chapter  Google Scholar 

  20. Pan, B., Shi, Z., Xu, X., Shi, T., Zhang, N., Zhu, X.: CoinNet: copy initialization network for multispectral imagery semantic segmentation. IEEE Geos. Rem. Sens. Lett. 16(5), 816–820 (2019). https://doi.org/10.1109/LGRS.2018.2880756

    Article  Google Scholar 

  21. The International Society for Photogrammetry and Remote Sensing: Potsdam dataset (2018)

    Google Scholar 

  22. Pielawski, N., et al.: CoMIR: contrastive multimodal image representation for registration. In: Advances in Neural Information Processing Systems, vol. 33, pp. 18433–18444 (2020)

    Google Scholar 

  23. Piramanayagam, S., Saber, E., Schwartzkopf, W., Koehler, F.W.: Supervised classification of multisensor remotely sensed images using a deep learning framework. Rem. Sens. 10(9) (2018). https://doi.org/10.3390/rs10091429

  24. Qi, K., Yang, C., Hu, C., Shen, Y., Shen, S., Wu, H.: Rotation invariance regularization for remote sensing image scene classification with convolutional neural networks. Rem. Sens. 13(4) (2021). https://doi.org/10.3390/rs13040569

  25. Rebuffi, S.A., Kolesnikov, A., Sperl, G., Lampert, C.H.: iCaRL: incremental classifier and representation learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2001–2010 (2017)

    Google Scholar 

  26. Ridnik, T., Lawen, H., Noy, A., Friedman, I.: TResNet: high performance GPU-dedicated architecture. In: Winter Conference on Applications of Computer Vision, pp. 1399–1408 (2021)

    Google Scholar 

  27. Rota Bulò, S., Porzi, L., Kontschieder, P.: In-place activated batchnorm for memory-optimized training of DNNs. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  28. Singh, S., et al.: Self-supervised feature learning for semantic segmentation of overhead imagery. In: The British Machine Vision Conference, vol. 1, p. 4 (2018)

    Google Scholar 

  29. Tasar, O., Tarabalka, Y., Alliez, P.: Incremental learning for semantic segmentation of large-scale remote sensing data. IEEE J. Sel. Top. App. Earth Observ. Rem. Sens. 12(9), 3524–3537 (2019)

    Article  Google Scholar 

  30. Valada, A., Mohan, R., Burgard, W.: Self-supervised model adaptation for multimodal semantic segmentation. Int. J. Comput. Vis. 128(5), 1239–1285 (2020)

    Article  Google Scholar 

  31. Wang, G., Wang, X., Fan, B., Pan, C.: Feature extraction by rotation-invariant matrix representation for object detection in aerial image. IEEE Geos. Rem. Sens. Lett. 14(6), 851–855 (2017). https://doi.org/10.1109/LGRS.2017.2683495

    Article  Google Scholar 

  32. Yang, S., Yu, S., Zhao, B., Wang, Y.: Reducing the feature divergence of RGB and near-infrared images using switchable normalization. In: IEEE Conference on Computer Vision and Pattern Recognition Workshop, June 2020, pp. 206–211 (2020). https://doi.org/10.1109/CVPRW50498.2020.00031

  33. Yuan, Q., Shafri, H.Z.M., Alias, A.H., Hashim, S.J.: Multiscale semantic feature optimization and fusion network for building extraction using high-resolution aerial images and LiDAR data. Rem. Sens. 13(13), 2473 (2021). https://doi.org/10.3390/rs13132473

    Article  Google Scholar 

  34. Zenke, F., Poole, B., Ganguli, S.: Continual learning through synaptic intelligence. In: International Conference on Machine Learning, ICML 2017, vol. 70, pp. 3987–3995 (2017)

    Google Scholar 

  35. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: IEEE Conference on Computer Vision and Pattern Recognition, July 2017 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was developed in the context of the Horizon 2020 projects SHELTER (grant agreement n.821282) and SAFERS (grant agreement n.869353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Arnaudo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arnaudo, E., Cermelli, F., Tavera, A., Rossi, C., Caputo, B. (2022). A Contrastive Distillation Approach for Incremental Semantic Segmentation in Aerial Images. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13232. Springer, Cham. https://doi.org/10.1007/978-3-031-06430-2_62

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06430-2_62

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06429-6

  • Online ISBN: 978-3-031-06430-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics