Nothing Special   »   [go: up one dir, main page]

Skip to main content

Analyzing EEG Data with Machine and Deep Learning: A Benchmark

  • Conference paper
  • First Online:
Image Analysis and Processing – ICIAP 2022 (ICIAP 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13231))

Included in the following conference series:

Abstract

Nowadays, machine and deep learning techniques are widely used in different areas, ranging from economics to biology. In general, these techniques can be used in two ways: trying to adapt well-known models and architectures to the available data, or designing custom architectures. In both cases, to speed up the research process, it is useful to know which type of models work best for a specific problem and/or data type. By focusing on EEG signal analysis, and for the first time in literature, in this paper a benchmark of machine and deep learning for EEG signal classification is proposed. For our experiments we used the four most widespread models, i.e., multilayer perceptron, convolutional neural network, long short-term memory, and gated recurrent unit, highlighting which one can be a good starting point for developing EEG classification models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Avola, D., Cinque, L., Foresti, G.L., Martinel, N., Pannone, D., Piciarelli, C.: Low-Level Feature Detectors and Descriptors for Smart Image and Video Analysis: A Comparative Study, pp. 7–29 (2018)

    Google Scholar 

  2. Avola, D., Bernardi, M., Cinque, L., Foresti, G.L., Massaroni, C.: Adaptive bootstrapping management by keypoint clustering for background initialization. Patt. Recogn. Lett. 100, 110–116 (2017)

    Article  Google Scholar 

  3. Avola, D., Cinque, L.: Encephalic NMR tumor diversification by textural interpretation. In: Proceedings of the 15th International Conference on Image Analysis and Processing (ICIAP), pp. 394–403 (2009)

    Google Scholar 

  4. Avola, D., Cinque, L., Fagioli, A., Filetti, S., Grani, G., Rodolà, E.: Multimodal feature fusion and knowledge-driven learning via experts consult for thyroid nodule classification. IEEE Trans. Circ. Syst. Video Technol., 1–8 (2021)

    Google Scholar 

  5. Avola, D., Cinque, L., Fagioli, A., Foresti, G.L., Massaroni, C., Pannone, D.: Feature-based SLAM algorithm for small scale UAV with Nadir view. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11752, pp. 457–467. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30645-8_42

  6. Avola, D., Cinque, L., Foresti, G.L., Pannone, D.: Automatic deception detection in RGB videos using facial action units. In: Proceedings of the 13th International Conference on Distributed Smart Cameras, pp. 1–6 (2019)

    Google Scholar 

  7. Avola, D., Foresti, G.L., Cinque, L., Massaroni, C., Vitale, G., Lombardi, L.: A multipurpose autonomous robot for target recognition in unknown environments. In: Proceedings of the 14th International Conference on Industrial Informatics (INDIN), pp. 766–771 (2016)

    Google Scholar 

  8. Chen, J., Jiang, D., Zhang, Y.: A hierarchical bidirectional GRU model with attention for EEG-based emotion classification. IEEE Access 7, 118530–118540 (2019)

    Google Scholar 

  9. Dong, S., Wang, P., Abbas, K.: A survey on deep learning and its applications. Comput. Sci. Rev. 40, 1–22 (2021)

    Google Scholar 

  10. Gandhi, T., Panigrahi, B.K., Anand, S.: A comparative study of wavelet families for EEG signal classification. Neurocomputing 74(17), 3051–3057 (2011)

    Google Scholar 

  11. Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H.: Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 141–144 (2003)

    Google Scholar 

  12. Jiang, X., Bian, G.B., Tian, Z.: Removal of artifacts from EEG signals: a review. Sensors 19(5), 987 (2019)

    Google Scholar 

  13. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.J.: EEGNet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Google Scholar 

  14. Li, Y., Wang, X.D., Luo, M.L., Li, K., Yang, X.F., Guo, Q.: Epileptic seizure classification of EEGs using time-frequency analysis based multiscale radial basis functions. IEEE J. Biomed. Health Inform. 22(2), 386–397 (2017)

    Google Scholar 

  15. Luo, T.J., Chao, F., et al.: Exploring spatial-frequency-sequential relationships for motor imagery classification with recurrent neural network. BMC Bioinform. 19(1), 1–18 (2018)

    Google Scholar 

  16. Nguyen, C.H., Karavas, G.K., Artemiadis, P.: Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features. J. Neural Eng. 15(1), 016002 (2017)

    Google Scholar 

  17. Patrício, D.I., Rieder, R.: Computer vision and artificial intelligence in precision agriculture for grain crops: a systematic review. Comput. Electron. Agric. 153, 69–81 (2018)

    Google Scholar 

  18. Petracca, A., et al.: A virtual ball task driven by forearm movements for neuro-rehabilitation. In: Proceedings of the International Conference on Virtual Rehabilitation (ICVR), pp. 162–163 (2015)

    Google Scholar 

  19. Pham, T., Ma, W., Tran, D., Nguyen, P., Phung, D.: EEG-based user authentication in multilevel security systems. In: Advanced Data Mining and Applications, pp. 513–523 (2013)

    Google Scholar 

  20. Rabcan, J., Levashenko, V., Zaitseva, E., Kvassay, M.: Review of methods for EEG signal classification and development of new fuzzy classification-based approach. IEEE Access 8, 189720–189734 (2020)

    Google Scholar 

  21. Ruhunage, I., Perera, C.J., Nisal, K., Subodha, J., Lalitharatne, T.D.: EMG signal controlled Transhumerai prosthetic with EEG-SSVEP based approach for hand open/close. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3169–3174 (2017)

    Google Scholar 

  22. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, Technical report (1985)

    Google Scholar 

  23. Schalk, G., McFarland, D., Hinterberger, T., Birbaumer, N., Wolpaw, J.: BCI 2000: a general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 51(6), 1034–1043 (2004)

    Google Scholar 

  24. Stone, J.V.: Independent component analysis: an introduction. Trends Cogn. Sci. 6(2), 59–64 (2002)

    Google Scholar 

  25. Tabar, Y.R., Halici, U.: A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14(1), 016003 (2016)

    Google Scholar 

  26. Thimm, G., Fiesler, E.: High-order and multilayer perceptron initialization. IEEE Trans. Neural Netw. 8(2), 349–359 (1997)

    Google Scholar 

  27. Wang, M., Abdelfattah, S., Moustafa, N., Hu, J.: Deep gaussian mixture-hidden Markov model for classification of EEG signals. IEEE Trans. Emerg. Top. Comput. Intell. 2(4), 278–287 (2018)

    Google Scholar 

  28. Wang, P., Jiang, A., Liu, X., Shang, J., Zhang, L.: LSTM-based EEG classification in motor imagery tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 26(11), 2086–2095 (2018)

    Google Scholar 

  29. Xu, G., et al.: A deep transfer convolutional neural network framework for EEG signal classification. IEEE Access 7, 112767–112776 (2019)

    Google Scholar 

  30. Yıldırım, Ö., Baloglu, U.B., Acharya, U.R.: A deep convolutional neural network model for automated identification of abnormal EEG signals. Neural Comput. Appl. 32(20), 15857–15868 (2020)

    Google Scholar 

  31. Zhang, X., Yao, L., Zhang, D., Wang, X., Sheng, Q.Z., Gu, T.: Multi-person brain activity recognition via comprehensive EEG signal analysis. In: Proceedings of the EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services (MobiQuitous), pp. 28–37 (2017)

    Google Scholar 

  32. Zhou, P.Y., Chan, K.C.: Fuzzy feature extraction for multichannel EEG classification. IEEE Trans. Cogn. Dev. Syst. 10(2), 267–279 (2016)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the MIUR under grant “Departments of Excellence 2018–2022" of the Sapienza University Computer Science Department and the ERC Starting Grant no. 802554 (SPECGEO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Pannone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avola, D. et al. (2022). Analyzing EEG Data with Machine and Deep Learning: A Benchmark. In: Sclaroff, S., Distante, C., Leo, M., Farinella, G.M., Tombari, F. (eds) Image Analysis and Processing – ICIAP 2022. ICIAP 2022. Lecture Notes in Computer Science, vol 13231. Springer, Cham. https://doi.org/10.1007/978-3-031-06427-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06427-2_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06426-5

  • Online ISBN: 978-3-031-06427-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics