Nothing Special   »   [go: up one dir, main page]

Skip to main content

Porting Sparse Linear Algebra to Intel GPUs

  • Conference paper
  • First Online:
Euro-Par 2021: Parallel Processing Workshops (Euro-Par 2021)

Abstract

With discrete Intel GPUs entering the high performance computing landscape, there is an urgent need for production-ready software stacks for these platforms. In this paper, we report how we prepare the Ginkgo math library for Intel GPUs by developing a kernel backed based on the DPC++ programming environment. We discuss conceptual differences to the CUDA and HIP programming models and describe workflows for simplified code conversion. We benchmark advanced sparse linear algebra routines utilizing the converted kernels to assess the efficiency of the DPC++ backend in the hardware-specific performance bounds. We compare the performance of basic building blocks against routines providing the same functionality that ship with Intel’s oneMKL vendor library.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://spec.oneApi.com/versions/latest/index.html.

  2. 2.

    These extensions are now part of the SYCL 2020 Specification: https://www.khronos.org/news/press/khronos-releases-sycl-2020-final-specification.

  3. 3.

    https://intel.github.io/llvm-docs/PluginInterface.html.

  4. 4.

    https://spec.oneApi.com/level-zero/latest/core/INTRO.html.

  5. 5.

    https://ark.intel.com/content/www/us/en/ark/products/211013/intel-iris-xe-max-graphics-96-eu.html.

  6. 6.

    Ginkgo is designed to compile for IEEE 754 double precision, single precision, double precision complex, and single precision complex arithmetic.

  7. 7.

    At the point of writing, oneMKL does not provide a COO implementation and CSR can only operate on shared memory on the Gen12 architecture.

References

  1. Anzt, H., et al.: Ginkgo: a high performance numerical linear algebra library. J. Open Source Softw. 5(52), 2260 (2020). https://doi.org/10.21105/joss.02260

    Article  Google Scholar 

  2. Cojean, T., Tsai, Y.H.M., Anzt, H.: Ginkgo - a math library designed for platform portability (2020). https://www.sciencedirect.com/science/article/abs/pii/S0167819122000096

  3. Deakin, T., Price, J., Martineau, M., McIntosh-Smith, S.: Evaluating attainable memory bandwidth of parallel programming models via babelstream. Int. J. Comput. Sci. Eng. 17, 247–262 (2017)

    Google Scholar 

  4. Keryell, R., Reyes, R., Howes, L.: Khronos SYCL for OpenCL: a tutorial. In: Proceedings of the 3rd International Workshop on OpenCL, IWOCL 2015. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2791321.2791345

  5. Konstantinidis, E., Cotronis, Y.: A quantitative roofline model for GPU kernel performance estimation using micro-benchmarks and hardware metric profiling. J. Parallel Distrib. Comput. 107, 37–56 (2017). https://doi.org/10.1016/j.jpdc.2017.04.002

    Article  Google Scholar 

  6. Tsai, Y.M., Cojean, T., Ribizel, T., Anzt, H.: Preparing Ginkgo for AMD GPUs – a testimonial on porting CUDA code to HIP. In: Balis, B., et al. (eds.) Euro-Par 2020. LNCS, vol. 12480, pp. 109–121. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-71593-9_9

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuhsiang M. Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsai, Y.M., Cojean, T., Anzt, H. (2022). Porting Sparse Linear Algebra to Intel GPUs. In: Chaves, R., et al. Euro-Par 2021: Parallel Processing Workshops. Euro-Par 2021. Lecture Notes in Computer Science, vol 13098. Springer, Cham. https://doi.org/10.1007/978-3-031-06156-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06156-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06155-4

  • Online ISBN: 978-3-031-06156-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics