Abstract
Topology optimisation of trusses can be formulated as a combinatorial and multi-modal problem in which locating distinct optimal designs allows practitioners to choose the best design based on their preferences. Bilevel optimisation has been successfully applied to truss optimisation to consider topology and sizing in upper and lower levels, respectively. We introduce exact enumeration to rigorously analyse the topology search space and remove randomness for small problems. We also propose novelty-driven binary particle swarm optimisation for bigger problems to discover new designs at the upper level by maximising novelty. For the lower level, we employ a reliable evolutionary optimiser to tackle the layout configuration aspect of the problem. We consider truss optimisation problem instances where designers need to select the size of bars from a discrete set with respect to practice code constraints. Our experimental investigations show that our approach outperforms the current state-of-the-art methods and it obtains multiple high-quality solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Ahrari, A., Atai, A.A., Deb, K.: A customized bilevel optimization approach for solving large-scale truss design problems. Eng. Optim. 52(12), 2062–2079 (2020)
Ahrari, A., Deb, K.: An improved fully stressed design evolution strategy for layout optimization of truss structures. Comput. Struct. 164, 127–144 (2016)
Brooks, T.R., Kenway, G.K., Martins, J.R.: Undeflected common research model (UCRM): an aerostructural model for the study of high aspect ratio transport aircraft wings. In: 35th AIAA Applied Aerodynamics Conference, p. 4456 (2017)
Cheng, M.: A Hybrid Harmony Search algorithm for discrete sizing optimization of truss structure. Autom. Constr. 69, 21–33 (2016)
Deb, K., Gulati, S.: Design of truss-structures for minimum weight using genetic algorithms. Finite Elem. Anal. Des. 37(5), 447–465 (2001)
Degertekin, S.O., Lamberti, L., Ugur, I.: Sizing, layout and topology design optimization of truss structures using the JAVA algorithm. Appl. Soft Comput. 70, 903–928 (2018)
Degertekin, S., Lamberti, L., Ugur, I.: Discrete sizing/layout/topology optimization of truss structures with an advanced JAVA algorithm. Appl. Soft Comput. 79, 363–390 (2019)
Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sc. 276(1), 51–81 (2002)
Fenton, M., McNally, C., Byrne, J., Hemberg, E., McDermott, J., O’Neill, M.: Automatic innovative truss design using grammatical evolution. Autom. Constr. 39(C), 59–69 (2014)
Finotto, V.C., da Silva, W.R., Valášek, M., Štemberk, P.: Hybrid fuzzy-genetic system for optimising cabled-truss structures. Adv. Eng. Softw. 62, 85–96 (2013)
Galvao, D.F., Lehman, J., Urbano, P.: Novelty-driven particle swarm optimization. In: Bonnevay, S., Legrand, P., Monmarché, N., Lutton, E., Schoenauer, M. (eds.) EA 2015. LNCS, vol. 9554, pp. 177–190. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31471-6_14
Hasancebi, O.: Optimization of truss bridges within a specified design domain using evolution strategies. Engi. Optim. 39(6), 737–756 (2007)
Hasancebi, O., Erbatur, F.: Layout optimization of trusses using improved GA methodologies. Acta mechanica 146(1), 87–107 (2001)
Hasançebi, O., Erbatur, F.: Layout optimisation of trusses using simulated annealing. Adv. Eng. Softw. 33(7), 681–696 (2002)
He, S., Prempain, E., Wu, Q.: An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optim. 36(5), 585–605 (2004)
Ho-Huu, V., Nguyen-Thoi, T., Vo-Duy, T., Nguyen-Trang, T.: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables. Comput. Struct. 165(C), 59–75 (2016)
Islam, M.J., Li, X., Deb, K.: Multimodal truss structure design using bilevel and niching based evolutionary algorithms. In: Genetic and Evolutionary Computation Conference (GECCO). pp. 274–281. Association for Computing Machinery (2017)
Kaveh, A., Talatahari, S.: A particle swarm ant colony optimization for truss structures with discrete variables. J. Constr. Steel Res. 65(8–9), 1558–1568 (2009)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: International Conference on Neural Networks (ICNN). vol. 4, pp. 1942–1948. IEEE (1995)
Khayyam, H., Jamali, A., Assimi, H., Jazar, R.N.: Genetic programming approaches in design and optimization of mechanical engineering applications. In: Jazar, R.N., Dai, L. (eds.) Nonlinear Approaches in Engineering Applications, pp. 367–402. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-18963-1_9
Kicinger, R., Arciszewski, T., De Jong, K.: Evolutionary computation and structural design: a survey of the state-of-the-art. Comput. Struct. 83(23–24), 1943–1978 (2005)
Lee, K.S., Geem, Z.W., Lee, S.h., Bae, K.w.: The harmony search heuristic algorithm for discrete structural optimization. Eng. Optim. 37(7), 663–684 (2005)
Lehman, J., Stanley, K.O.: Exploiting open-endedness to solve problems through the search for novelty. In: ALIF, pp. 329–336. Citeseer (2008)
Lehman, J., Stanley, K.O.: Abandoning objectives: evolution through the search for novelty alone. Evol. Comput. 19(2), 189–223 (2011)
Li, L.J., Huang, Z.B., Liu, F.: A heuristic particle swarm optimization method for truss structures with discrete variables. Comput. Struct. 87(7–8), 435–443 (2009)
Li, X., Epitropakis, M.G., Deb, K., Engelbrecht, A.: Seeking multiple solutions: an updated survey on niching methods and their applications. IEEE Trans. Evol. Comput. 21(4), 518–538 (2016)
Martinez, A.D., Osaba, E., Oregi, I., Fister, I., Fister, I., Ser, J.D.: hybridizing differential evolution and novelty search for multimodal optimization problems. In: Genetic and Evolutionary Computation Conference (GECCO) Companion, pp. 1980–1989 (2019)
Panagant, N., Bureerat, S.: Truss topology, shape and sizing optimization by fully stressed design based on hybrid grey wolf optimization and adaptive differential evolution. Eng. Optim. 50(10), 1645–1661 (2018)
Rajeev, S., Krishnamoorthy, C.S.: Discrete optimization of structures using genetic algorithms. J. Struct. Eng. 118(5), 1233–1250 (1992)
Rao, G.V.: Optimum designs for transmission line towers. Comput. Struct. 57(1), 81–92 (1995)
Seber, G., Ran, H., Nam, T., Schetz, J., Mavris, D.: Multidisciplinary design optimization of a truss braced wing aircraft with upgraded aerodynamic analyses. In: 29th AIAA Applied Aerodynamics Conference, p. 3179 (2011)
Sinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2017)
Stolpe, M.: Truss optimization with discrete design variables: a critical review. Struct. Multidiscipl. Optim. 53(2), 349–374 (2015). https://doi.org/10.1007/s00158-015-1333-x
Topping, B.: Shape optimization of skeletal structures: a review. J. Struct. Eng. 109(8), 1933–1951 (1983)
Wu, S.J., Chow, P.T.: Steady-state genetic algorithms for discrete optimization of trusses. Comput. Struct. 56(6), 979–991 (1995)
Zhang, Y.N., Liu, P., Liu, B., Zhu, C.Y., Li, Y.: Application of improved hybrid genetic algorithm to optimized design of architecture structures. Huanan Ligong Daxue Xuebai(Ziran Kexue Ban)/J. South China Univ. Technol. (Natural Science Edition)(China) 33(3), 69–72 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Assimi, H., Neumann, F., Wagner, M., Li, X. (2022). Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. In: Pérez Cáceres, L., Verel, S. (eds) Evolutionary Computation in Combinatorial Optimization. EvoCOP 2022. Lecture Notes in Computer Science, vol 13222. Springer, Cham. https://doi.org/10.1007/978-3-031-04148-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-04148-8_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-04147-1
Online ISBN: 978-3-031-04148-8
eBook Packages: Computer ScienceComputer Science (R0)