Abstract
We consider homotopy type theory (HoTT) as a possible basis for Artificial General Intelligence (AGI) and study how it will frame the traditional problems of symbolic Artificial Intelligence (AI), which are not avoided, but can be addressed in a constructive way. We conclude that HoTT is suitable for building a language of a cognitive architecture, but it is not sufficient by itself to build an AGI system, which should contain grounded types and operation, including those that alter already defined types in a not strictly provable (within available types themselves) way.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Commun. ACM 19(3), 113–126 (1976). https://doi.org/10.1145/360018.360022
Corfield, D.: Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy, p. 191. Oxford University Press, Oxford (2020)
Homotopy Type Theory: Univalent Foundations of Mathematics (2013). arXiv preprint, arXiv: 1308.0729
Goertzel, B.: A formal model of cognitive synergy. In: Everitt, T., Goertzel, B., Potapov, A. (eds.) AGI 2017. LNCS (LNAI), vol. 10414, pp. 13–22. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63703-7_2
Phillips, S.: A general (category theory) principle for general intelligence: duality (adjointness). In: Everitt, T., Goertzel, B., Potapov, A. (eds.) AGI 2017. LNCS (LNAI), vol. 10414, pp. 57–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63703-7_6
Lamb, L.C., et al.: Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective (2021). arXiv preprint, arXiv: 2003.00330
Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1 & 2. Atlantis press, Paris (2014)
Potapov, A., Belikov, A., Bogdanov, V., Scherbatiy, A.: Cognitive module networks for grounded reasoning. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds.) AGI 2019. LNCS (LNAI), vol. 11654, pp. 148–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27005-6_15
Dapoigny, R., Barlatier, P.: Using a dependently-typed language for expressing ontologies. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011. LNCS (LNAI), vol. 7091, pp. 257–268. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25975-3_23
Lai, Z., et al.: Dependently Typed Knowledge Graphs (2020). arXiv preprint, arXiv: 2003.03785
Goertzel, B.: Distinction Graphs and Graphtropy: A Formalized Phenomenological Layer Underlying Classical and Quantum Entropy, Observational Semantics and Cognitive Computation (2019). arXiv preprint, arXiv: 1902.00741
Legg, Sh.: Machine Super Intelligence. PhD thesis (2008)
Wang, P.: On definition of artificial intelligence. J. Artif. Gen. Intell. 19(2), 1–37 (2019)
Schmidhuber, J.: Gödel machines: fully self-referential optimal universal self-improvers. In: Goertzel, B., Pennachin. C. (eds.) Artificial General Intelligence. Cognitive Technologies, pp. 199–226. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68677-4_7
Acknowledgments
The authors are grateful to Ben Goertzel for useful references and ideas, which stimulated the study performed in the present paper. Thanks to Janet Adams and James Boyd for proofreading.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Potapov, A., Bogdanov, V. (2022). Univalent Foundations of AGI are (not) All You Need. In: Goertzel, B., Iklé, M., Potapov, A. (eds) Artificial General Intelligence. AGI 2021. Lecture Notes in Computer Science(), vol 13154. Springer, Cham. https://doi.org/10.1007/978-3-030-93758-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-030-93758-4_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93757-7
Online ISBN: 978-3-030-93758-4
eBook Packages: Computer ScienceComputer Science (R0)