Nothing Special   »   [go: up one dir, main page]

Skip to main content

Univalent Foundations of AGI are (not) All You Need

  • Conference paper
  • First Online:
Artificial General Intelligence (AGI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13154))

Included in the following conference series:

Abstract

We consider homotopy type theory (HoTT) as a possible basis for Artificial General Intelligence (AGI) and study how it will frame the traditional problems of symbolic Artificial Intelligence (AI), which are not avoided, but can be addressed in a constructive way. We conclude that HoTT is suitable for building a language of a cognitive architecture, but it is not sufficient by itself to build an AGI system, which should contain grounded types and operation, including those that alter already defined types in a not strictly provable (within available types themselves) way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Newell, A., Simon, H.A.: Computer science as empirical inquiry: symbols and search. Commun. ACM 19(3), 113–126 (1976). https://doi.org/10.1145/360018.360022

    Article  MathSciNet  Google Scholar 

  2. Corfield, D.: Modal Homotopy Type Theory: The Prospect of a New Logic for Philosophy, p. 191. Oxford University Press, Oxford (2020)

    Book  Google Scholar 

  3. Homotopy Type Theory: Univalent Foundations of Mathematics (2013). arXiv preprint, arXiv: 1308.0729

    Google Scholar 

  4. Goertzel, B.: A formal model of cognitive synergy. In: Everitt, T., Goertzel, B., Potapov, A. (eds.) AGI 2017. LNCS (LNAI), vol. 10414, pp. 13–22. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63703-7_2

    Chapter  Google Scholar 

  5. Phillips, S.: A general (category theory) principle for general intelligence: duality (adjointness). In: Everitt, T., Goertzel, B., Potapov, A. (eds.) AGI 2017. LNCS (LNAI), vol. 10414, pp. 57–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63703-7_6

    Chapter  Google Scholar 

  6. Lamb, L.C., et al.: Graph Neural Networks Meet Neural-Symbolic Computing: A Survey and Perspective (2021). arXiv preprint, arXiv: 2003.00330

    Google Scholar 

  7. Goertzel, B., Pennachin, C., Geisweiller, N.: Engineering General Intelligence, Part 1 & 2. Atlantis press, Paris (2014)

    Book  Google Scholar 

  8. Potapov, A., Belikov, A., Bogdanov, V., Scherbatiy, A.: Cognitive module networks for grounded reasoning. In: Hammer, P., Agrawal, P., Goertzel, B., Iklé, M. (eds.) AGI 2019. LNCS (LNAI), vol. 11654, pp. 148–158. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-27005-6_15

    Chapter  Google Scholar 

  9. Dapoigny, R., Barlatier, P.: Using a dependently-typed language for expressing ontologies. In: Xiong, H., Lee, W.B. (eds.) KSEM 2011. LNCS (LNAI), vol. 7091, pp. 257–268. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25975-3_23

    Chapter  Google Scholar 

  10. Lai, Z., et al.: Dependently Typed Knowledge Graphs (2020). arXiv preprint, arXiv: 2003.03785

    Google Scholar 

  11. Goertzel, B.: Distinction Graphs and Graphtropy: A Formalized Phenomenological Layer Underlying Classical and Quantum Entropy, Observational Semantics and Cognitive Computation (2019). arXiv preprint, arXiv: 1902.00741

    Google Scholar 

  12. Legg, Sh.: Machine Super Intelligence. PhD thesis (2008)

    Google Scholar 

  13. Wang, P.: On definition of artificial intelligence. J. Artif. Gen. Intell. 19(2), 1–37 (2019)

    Google Scholar 

  14. Schmidhuber, J.: Gödel machines: fully self-referential optimal universal self-improvers. In: Goertzel, B., Pennachin. C. (eds.) Artificial General Intelligence. Cognitive Technologies, pp. 199–226. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-68677-4_7

Download references

Acknowledgments

The authors are grateful to Ben Goertzel for useful references and ideas, which stimulated the study performed in the present paper. Thanks to Janet Adams and James Boyd for proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey Potapov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Potapov, A., Bogdanov, V. (2022). Univalent Foundations of AGI are (not) All You Need. In: Goertzel, B., Iklé, M., Potapov, A. (eds) Artificial General Intelligence. AGI 2021. Lecture Notes in Computer Science(), vol 13154. Springer, Cham. https://doi.org/10.1007/978-3-030-93758-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93758-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93757-7

  • Online ISBN: 978-3-030-93758-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics