Nothing Special   »   [go: up one dir, main page]

Skip to main content

A Reasoning Approach to Financial Data Exchange with Statistical Confidentiality

  • Conference paper
  • First Online:
Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2021)

Abstract

Motivated by our experience with the Bank of Italy, in this work we present Vada-SA, a reasoning framework for financial data exchange with statistical confidentiality. By reasoning on the interplay of the features that may lead to identity disclosure, the framework is able to guarantee explainable, declarative, and context-aware confidentiality.

The views and opinions expressed in this paper are those of the authors and do not necessarily reflect the official policy or position of Banca d’Italia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bellomarini, L., Benedetto, D., Gottlob, G., Sallinger, E.: Vadalog: A modern architecture for automated reasoning with large knowledge graphs. Inf. Syst., 101528 (2020)

    Google Scholar 

  2. Bellomarini, L., Blasi, L., Laurendi, R., Sallinger, E.: Financial data exchange with statistical confidentiality: a reasoning-based approach. In: EDBT, pp. 558–569 (2021)

    Google Scholar 

  3. Bellomarini, L., Fakhoury, D., Gottlob, G., Sallinger, E.: Knowledge graphs and enterprise AI: the promise of an enabling technology. In: ICDE, pp. 26–37. IEEE (2019)

    Google Scholar 

  4. Benedetti, R., Franconi, L.: Statistical and technological solutions for controlled data dissemination. In: Pre-proceedings of New Techniques and Technologies for Statistics. vol. 1, pp. 225–232 (1998)

    Google Scholar 

  5. Benschop, T., Machingauta, C., Welch, M.: Statistical disclosure control: a practice guide (2019)

    Google Scholar 

  6. Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming, pp. 1–12. Springer Berlin Heidelberg, Heidelberg (2006)

    Google Scholar 

  7. Hundepool, A., et al.: \(\tau \)-argus user’s manual, version 3.3. Statistics Netherlands, Voorburg, The Netherlands (2005)

    Google Scholar 

  8. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. TODS 4(4), 455–468 (1979)

    Google Scholar 

  9. Manning, A.M., Haglin, D.J., Keane, J.A.: A recursive search algorithm for statistical disclosure assessment. Data Mining Knowl. Discov. 16(2), 165–196 (2008)

    Google Scholar 

  10. Matthews, G., Harel, O.: Data confidentiality: a review of methods for statistical disclosure limitation and methods for assessing privacy. Stat. Surv. 5 (2011)

    Google Scholar 

  11. Prasser, F., Kohlmayer, F.: Putting statistical disclosure control into practice: the ARX data anonymization tool. In: Gkoulalas-Divanis, A., Loukides, G. (eds.) Medical Data Privacy Handbook. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23633-9_6

  12. Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)

    Google Scholar 

  13. Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression (1998)

    Google Scholar 

  14. Skinner, C., Marsh, C., Openshaw, S., Wymer, C.: Disclosure control for census microdata. JOS 10(1), 31–51 (1994)

    Google Scholar 

  15. Sweeney, L.: Guaranteeing anonymity when sharing medical data, the datafly system. In: Proceedings of AMIA Fall Symposium, pp. 51–55 (1997)

    Google Scholar 

  16. Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 571–588 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Bellomarini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bellomarini, L., Blasi, L., Laurendi, R., Sallinger, E. (2021). A Reasoning Approach to Financial Data Exchange with Statistical Confidentiality. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1525. Springer, Cham. https://doi.org/10.1007/978-3-030-93733-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93733-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93732-4

  • Online ISBN: 978-3-030-93733-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics