Abstract
Motivated by our experience with the Bank of Italy, in this work we present Vada-SA, a reasoning framework for financial data exchange with statistical confidentiality. By reasoning on the interplay of the features that may lead to identity disclosure, the framework is able to guarantee explainable, declarative, and context-aware confidentiality.
The views and opinions expressed in this paper are those of the authors and do not necessarily reflect the official policy or position of Banca d’Italia.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bellomarini, L., Benedetto, D., Gottlob, G., Sallinger, E.: Vadalog: A modern architecture for automated reasoning with large knowledge graphs. Inf. Syst., 101528 (2020)
Bellomarini, L., Blasi, L., Laurendi, R., Sallinger, E.: Financial data exchange with statistical confidentiality: a reasoning-based approach. In: EDBT, pp. 558–569 (2021)
Bellomarini, L., Fakhoury, D., Gottlob, G., Sallinger, E.: Knowledge graphs and enterprise AI: the promise of an enabling technology. In: ICDE, pp. 26–37. IEEE (2019)
Benedetti, R., Franconi, L.: Statistical and technological solutions for controlled data dissemination. In: Pre-proceedings of New Techniques and Technologies for Statistics. vol. 1, pp. 225–232 (1998)
Benschop, T., Machingauta, C., Welch, M.: Statistical disclosure control: a practice guide (2019)
Dwork, C.: Differential privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) Automata, Languages and Programming, pp. 1–12. Springer Berlin Heidelberg, Heidelberg (2006)
Hundepool, A., et al.: \(\tau \)-argus user’s manual, version 3.3. Statistics Netherlands, Voorburg, The Netherlands (2005)
Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. TODS 4(4), 455–468 (1979)
Manning, A.M., Haglin, D.J., Keane, J.A.: A recursive search algorithm for statistical disclosure assessment. Data Mining Knowl. Discov. 16(2), 165–196 (2008)
Matthews, G., Harel, O.: Data confidentiality: a review of methods for statistical disclosure limitation and methods for assessing privacy. Stat. Surv. 5 (2011)
Prasser, F., Kohlmayer, F.: Putting statistical disclosure control into practice: the ARX data anonymization tool. In: Gkoulalas-Divanis, A., Loukides, G. (eds.) Medical Data Privacy Handbook. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23633-9_6
Samarati, P.: Protecting respondents identities in microdata release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)
Samarati, P., Sweeney, L.: Protecting privacy when disclosing information: k-anonymity and its enforcement through generalization and suppression (1998)
Skinner, C., Marsh, C., Openshaw, S., Wymer, C.: Disclosure control for census microdata. JOS 10(1), 31–51 (1994)
Sweeney, L.: Guaranteeing anonymity when sharing medical data, the datafly system. In: Proceedings of AMIA Fall Symposium, pp. 51–55 (1997)
Sweeney, L.: Achieving k-anonymity privacy protection using generalization and suppression. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10(05), 571–588 (2002)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Bellomarini, L., Blasi, L., Laurendi, R., Sallinger, E. (2021). A Reasoning Approach to Financial Data Exchange with Statistical Confidentiality. In: Kamp, M., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2021. Communications in Computer and Information Science, vol 1525. Springer, Cham. https://doi.org/10.1007/978-3-030-93733-1_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-93733-1_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93732-4
Online ISBN: 978-3-030-93733-1
eBook Packages: Computer ScienceComputer Science (R0)