Abstract
The process for automatically creating 3D city models from contemporary photographs and visualizing them on mobile devices is well established. 4D city models that can display a temporal dimension are far more complex to generate automatically. In this article, we focus on major challenges in the process of developing an automated pipeline, starting from content-based image retrieval applied to historical images, via automatic historical image orientation, up to visualization of the 4D data in Virtual Reality (VR). The result is an interactive browser-based device-rendered 4D visualization and information system for mobile devices. This pipeline has been in development since 2015. In this article, we present initial results and early-stage findings in the process of overcoming three major challenges on the way to 4D city models: (1) to identify photographs with corresponding views, (2) to reconstruct the position and orientation of photographs and (3) to design a user-centered, browser-based 4D mobile application.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Münster, S., Maiwald, F., Lehmann, C., Lazariv, T., Hofmann, M., Niebling, F.: Introducing an automated pipeline for a browser-based, city-scale mobile 4D VR application based on historical images. Paper Presented at the ACM Multimedia - SUMAC Workshop, Seattle (2020)
Ceconello, M., Spagnoli, A., Spallazzo, D., Tolino, U.: Playing design- mobile serious games to valorize design culture in the urban space. Paper Presented at the Digital Heritage 2015, Granada, Spain (2015)
Breitenstein, M., Münster, S., Niebling, F.: Gamifizierte augmented reality-anwendungen im tourismuskontext: ein literaturreview zu Gestaltungsansätzen, Chancen und Risiken. In: Köhler, T. (ed.) Communities in New Media. Researching the Digital Transformation in Science, Business, Education & Public Administration, pp 197–209. TUDPress, Dresden (2019)
ViMM WG 2.2: Meaningful Content connected to the Real World (Report) (2017)
Mathis, R.: Freiburg Zeitreise - die Stadtjubiläum 2020 app (version 1.1.0) (2020). https://play.google.com/store/apps/details?id=com.extendedvision.futurehistory.freiburg2020&hl=de. Accessed 21 Dec 2020
Youssef, M.: Museum of London: streetmuseum app (version 2.03) (2016). https://apkpure.com/de/museum-of-london-streetmuseum/com.streetmuseum. Accessed 21 Dec 2020
Schücking, B.A.: Zeitfenster app - friedliche revolution leipzig (version 1.1.1) (2018). https://zeitfenster.uni-leipzig.de/. Accessed 21 Dec 2020
Burkert, P., Straubinger, S., Schaufler, B.: Zeitfenster app (2018). https://www.zeitfenster-app.de/. Accessed 21 Dec 2020
Berdin, J., Helder, M., Fridhi, A.: Applications of the urban timetravel project (2019). https://www.urbantimetravel.com/project. Accessed 21 Dec 2020
Buhrow, T.: WDR 360° VR app (2017). https://play.google.com/store/apps/details?id=de.WDR.VR&hl=de. Accessed 10 Oct 2020
Buhrow, T.: NRW2go app (version 1.0.3) (2019). https://play.google.com/store/apps/details?id=de.WDR.NRW2go&hl=de. Accessed 10 Oct 2020
Bellut, T.: History 360° (2019). https://history360.zdf.de/. Accessed 10 Oct 2020
Schulte-Kellinghaus, J.: The Berlin wall – a multimedia history (2013). https://www.the-berlin-wall.com/. Accessed 10 Oct 2020
Mager, T., Hein, C.: Digital excavation of mediatized urban heritage: automated recognition of buildings in image sources. Urban Plann. 5(2), 24–34 (2020)
Maiwald, F., Schneider, D., Henze, F., Münster, S., Niebling, F.: Feature matching of historical images based on geometry of quadrilaterals. Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. XLII-2, 643–650 (2018). https://doi.org/10.5194/isprs-archives-XLII-2-643-2018
Pomaska, G.: Zur Dokumentation und 3D-modellierung von denkmalen mit digitalen fotografischen verfahren. In: Heine, K., Rheidt, K., Henze, F., Riedel, A. (eds.) Von Handaufmaß bis High Tech III - 3D in der historischen Bauforschung, pp. 26–32. Verlag Philipp von Zabern, Mainz (2011)
Maiwald, F., Vietze, T., Schneider, D., Henze, F., Münster, S., Niebling, F.: Photogrammetric analysis of historical image repositories for virtual reconstruction in the field of digital humanities. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. 42, 447 (2017). https://doi.org/10.5194/isprs-archives-XLII-2-W3-447-2017
Wood, J., Isenberg, P., Isenberg, T., Dykes, J., Boukhelifa, N., Slingsby, A.: Sketchy rendering for information visualization. IEEE Trans. Vis. Comput. Graphics 18(12), 2749–2758 (2012). https://doi.org/10.1109/TVCG.2012.262
Glaser, M., Lengyel, D., Toulouse, C., Schwan, S.: Designing computer-based learning contents: influence of digital zoom on attention. Educ. Tech. Res. Dev. 65(5), 1135–1151 (2016). https://doi.org/10.1007/s11423-016-9495-9
Münster, S.: Cultural heritage at a glance. Four case studies about the perception of digital architectural 3D models. In: Alonso, F. (ed.) 2018 3rd Digital Heritage International Congress (DigitalHERITAGE) held jointly with 2018 24th International Conference on Virtual Systems & Multimedia (VSMM 2018). IEEE, San Francisco (2018)
Burmester, M., et al.: Lost in space? 3D-interaction-patterns für einfache und positive nutzung von 3D interfaces. In: Hess, S., Fischer, H. (eds.) Mensch und Computer 2018 – Usability Professionals (Electronic Book). Gesellschaft für Informatik e.V. und German UPA e.V., Bonn (2018)
Oliveira, S.A., Lenardo, I.D., Kaplan, F.: Machine vision algorithms on cadaster plans. In: Conference of the International Alliance of Digital Humanities Organizations (DH 2017), Montreal, Canada, 8–11 August 2017 (2017)
Razavian, A.S.: CNN features off-the-shelf: an astounding baseline for recognition. Paper Presented at the Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2014)
Wan, J., et al.: Deep learning for content-based image retrieval: a comprehensive study. Proceedings of the 22nd ACM International Conference on Multimedia, pp. 157–166 (2014)
Razavian, A.S., et al.: Visual instance retrieval with deep convolutional networks. ITE Trans. Media Technol. Appl. 4(3), 251–258 (2016)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for largescale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Chollet, F.: Deep Learning with Python. Manning, Shelter Island (2018)
Ting, K.M.: Confusion matrix. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining. Springer, Boston (2016). https://doi.org/10.1007/978-1-4899-7502-7_50-1
Ting, K.M.: Precision and recall. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining. Springer, Boston (2016). https://doi.org/10.1007/978-1-4899-7502-7_659-1
Davis, J., Goadrich, M.: The relationship between precision-recall and ROC curves. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 233–240 (2006)
Schindler, G., Dellaert, F.: 4D cities: analyzing, visualizing, and interacting with historical urban photo collections. J. Multimed. 7(2), 124–131 (2012). https://doi.org/10.4304/jmm.7.2.124-131
Zawieska, D., Markiewicz, J.: Development of photogrammetric documentation of the borough at biskupin based on archival photographs - first results. In: Ioannides, M., et al. (eds.) EuroMed 2016. LNCS, vol. 10059, pp. 3–9. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48974-2_1
Bevilacqua, M.G., Caroti, G., Piemonte, A., Ulivieri, D.: Reconstruction of lost architectural volumes by integration of photogrammetry from archive imagery with 3-D models of the status quo. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. XLII-2/W9, 119–125 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W9-119-2019
Maiwald, F., Vietze, T., Schneider, D., Henze, F., Münster, S., Niebling, F.: Photogrammetric analysis of historical image repositories for virtual reconstruction in the field of digital humanities. ISPRS Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. WG V/5 447–452 (2017). 3D-Arch 2017 – 3D Virtual Reconstruction and Visualization of Complex Architectures (XL-5/W5)
Bitelli, G., Dellapasqua, M., Girelli, V.A., Sbaraglia, S., Tinia, M.A.: Historical photogrammetry and terrestrial laser scanning for the 3D virtual reconstruction of destroyed structures: a case study in Italy. ISPRS – Inte. Arch. Photogr. Remote Sens. Spat. Inf. Sci. XLII-5/W1, 113–119 (2017). https://doi.org/10.5194/isprs-archives-XLII-5-W1-113-2017
n.b.: Agisoft Metashape (2020). www.agisoft.com. Accessed 10 Oct 2020
AliceVision: Meshroom: a 3D reconstruction software (2018)
Schönberger, J.L., Frahm, J.-M.: Structure-from-motion revisited. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2016)
Condorelli, F., Rinaudo, F.: Cultural heritage reconstruction from historical photographs and videos. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. XLII-2, 259–265 (2018)
Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: exploring photo collections in 3D. ACM Trans. Graph. (TOG) 25, 835–846 (2006)
Maiwald, F.: Generation of a benchmark dataset using historical photographs for an automated evaluation of different feature matching methods. Int. Arch. Photogr. Remote Sens. Spat. Inf. Sci. XLII-2/W13, 87–94 (2019). https://doi.org/10.5194/isprs-archives-XLII-2-W13-87-2019
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Alcantarilla, P.F., Solutions, T.: Fast explicit diffusion for accelerated features in nonlinear scale spaces. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2011)
Bay, H., Tuytelaars, T., Van Gool, L.: Surf: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32
Moulon, P., Monasse, P., Marlet, R.: Adaptive structure from motion with a contrario model estimation. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7727, pp. 257–270. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37447-0_20
Wu, C.: Towards linear-time incremental structure from motion. In: 2013 International conference on 3D Vision-3DV, pp 127–134. IEEE (2013)
Maiwald, F., Bruschke, J., Lehmann, C., Niebling, F.: A 4D information system for the exploration of multitemporal images and maps using photogrammetry, web technologies and VR/AR. Virtual Archaeol. Rev. 10(21), 1–13 (2019)
Li, J., Hu, Q., Ai, M.: RIFT: multi-modal image matching based on radiation-invariant feature transform. arXiv preprint arXiv:180409493 (2018)
Wu, Y., Ma, W., Gong, M., Su, L., Jiao, L.: A novel point-matching algorithm based on fast sample consensus for image registration. IEEE Geosci. Remote Sens. Lett. 12(1), 43–47 (2015). https://doi.org/10.1109/LGRS.2014.2325970
Li, J., Hu, Q., Ai, M.: Robust feature matching for geospatial images via an affine-invariant coordinate system. Photogram. Rec. 32(159), 317–331 (2017)
Mishkin, D., Matas, J., Perdoch, M.: MODS: fast and robust method for two-view matching. Comput. Vis. Image Underst. 141, 81–93 (2015). https://doi.org/10.1016/j.cviu.2015.08.005
Mishkin, D., Matas, J., Perdoch, M., Lenc, K.: WxBS: wide baseline stereo generalizations. arXiv preprint arXiv:150406603 (2015)
Chum, O., Matas, J.: Matching with PROSAC-progressive sample consensus. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, pp 220–226. IEEE (2005). https://doi.org/10.1109/CVPR.2005.221
Dusmanu, M., et al.: D2-Net: a trainable CNN for joint description and detection of local features. In: 2019 Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8092–8101 (2019)
Noh, H., Araujo, A., Sim, J., Weyand, T., Han, B.: Large-scale image retrieval with attentive deep local features. In: Proceedings of the IEEE International Conference on Computer Vision, pp 3456–3465 (2017)
X3DOM (2018). https://x3dom.org/
Three.js (2019). https://threejs.org/
Smithsonian 3D Labs (2019). https://3d.si.edu/labs
3D HOP (2019). http://vcg.isti.cnr.it/3dhop/
Hexalab (2019). https://www.hexalab.net/
INCEPTION (2018). https://www.inception-project.eu/en. https://www.inception-project.eu/en
Champion, E., Rahaman, H.: Survey of 3D digital heritage repositories and platforms. Virtual Archaeol. Rev. 11(23) (2020). https://doi.org/10.4995/var.2020.13226
Fernie, K., et al.: 3D content in Europeana task force. The Hague (2020)
Prechtel, N., Münster, S., Kröber, C., Schubert, C., Schietzold, S.: Presenting cultural heritage landscapes – from gis via 3D models to interactive presentation frameworks. ISPRS Ann. Photogr. Remote Sens. Spat. Inf. Sci. II-5/W1, 2013 (2013)
NIMA – National Imagery and Mapping Agency: Department of Defense World Geodetic System. Technical report, TR 8350.2 (1984)
Borda, A., Bowen, J.P.: Smart cities and digital culture: models of innovation. In: Giannini, T., Bowen, J.P. (eds.) Museums and Digital Culture. SSCC, pp. 523–549. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97457-6_27
Nielsen, J., Budiu, R.: Mobile Usability. Academic Press, Salt Lake City (2013)
Harrison, R., Flood, D., Duce, D.: Usability of mobile applications: literature review and rationale for a new usability model. J. Interact. Sci. 1(1), 1 (2013). https://doi.org/10.1186/2194-0827-1-1
Hassenzahl, M., Burmester, M., Koller, F.: AttrakDiff: Ein Fragebogen zur Messung wahrgenommener hedonischer und pragmatischer Qualität. In: Ziegler, J., Szwillus (eds.) Mensch & Computer 2003. Interaktion in Bewegung, pp 187–196. B.G. Teubner., Leipzig (2003)
Schrepp, M., Hinderks, A., Thomaschewski, J.: Design and evaluation of a short version of the user experience questionnaire (UEQ-S). IJIMAI 4(6), 103–108 (2017)
Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experience questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9_6
Klamert, K., Münster, S.: Child’s play - A literature based survey on gamified tools and methods for fostering public participation in urban planning. In: Parycek, P., et al. (eds.) Electronic Participation. LNCS, pp. 24-33. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-64322-9_3
Niebling, F., Maiwald, F., Barthel, K., Latoschik, M.E.: 4D augmented city models, photogrammetric creation and dissemination. In: Münster, S., Friedrichs, K., Niebling, F., Seidel-Grzesinska, A. (eds.) UHDL/DECH -2017. CCIS, vol. 817, pp. 196–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76992-9_12
Jylhäa, H., Hamari, J.: An icon that everyone wants to click: how perceived aesthetic qualities predict app icon successfulness. Int. J. Hum Comput Stud. 130, 73–85 (2019)
Böhmer, M., Krüger, A.: A study on icon arrangement by smartphone users. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp 2137–2146. Association for Computing Machinery (2013). https://doi.org/10.1145/2470654.2481294
Lavid Ben Lulu, D., Kuflik, T.: Wise mobile icons organization: apps taxonomy classification using functionality mining to ease apps finding. Mob. Inf. Syst. 2016, 3083450 (2016). https://doi.org/10.1155/2016/3083450
Colley, A., Häkkilä, J.: Exploring finger specific touch screen interaction for mobile phone user interfaces. Paper Presented at the Proceedings of the 26th Australian Computer-Human Interaction Conference on Designing Futures: the Future of Design, Sydney, New South Wales, Australia (2014)
Gao, Q., Sun, Q.: Examining the usability of touch screen gestures for older and younger adults. Hum. Factors 57(5), 835–863 (2015). https://doi.org/10.1177/0018720815581293
Noh, H., et al.: Large-scale image retrieval with attentive deep local features. In: IEEE International Conference on Computer Vision, pp. 3456–3465 (2017)
Xie, L., et al.: Image classification and retrieval are one. In: Proceedings of the 5th ACM on International Conference on Multimedia Retrieval, pp. 3–10 (2015)
Acknowledgments
The research for this paper was carried out in the projects TMPC (Sächsische Aufbaubank, 100377090), TMPCJ (Thüringische Aufbaubank, 220FGI0045), and Denkmalschutz4D (Deutsche Bundesstiftung Umwelt, 35654) as well as the junior research group UrbanHistory4D (German Federal Ministry of Education and Research, 01UG1630). Furthermore, this work was supported by the German Federal Ministry of Education and Research (BMBF, 01/S18026A-F) by funding the competence center for Big Data and AI “ScaDS.AI Dresden/Leipzig.” The authors gratefully acknowledge the Gemeinsame Wissenschaftkonferenz’s support for this project by providing computing time through the Center for Information Services and HPC (ZIH) at TU Dresden on HRSK-II.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Münster, S., Lehmann, C., Lazariv, T., Maiwald, F., Karsten, S. (2021). Toward an Automated Pipeline for a Browser-Based, City-Scale Mobile 4D VR Application Based on Historical Images. In: Niebling, F., Münster, S., Messemer, H. (eds) Research and Education in Urban History in the Age of Digital Libraries. UHDL 2019. Communications in Computer and Information Science, vol 1501. Springer, Cham. https://doi.org/10.1007/978-3-030-93186-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-93186-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-93185-8
Online ISBN: 978-3-030-93186-5
eBook Packages: Computer ScienceComputer Science (R0)