Nothing Special   »   [go: up one dir, main page]

Skip to main content

Adaptive Learning Rate and Spatial Regularization Background Perception Filter for Visual Tracking

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Abstract

In recent years, the correlation filter (CF) has excellent accuracy and speed in the field of visual object tracking. Training samples for CF are usually generated by circular shifts. Although such training samples combined with Fourier transform can be effective in reducing computational effort. They also give rise to boundary effects. Spatial regularization can effectively suppress the boundary effect, but the learning rate are fixed. They cannot be adaptively adjusted to match environmental changes, and the background information is not suppressed. In this paper, we propose a new Correlation filter model, namely Adaptive Learning Rate and Spatial Regularization Background Perception Filter for Visual Tracking (SRAL). Firstly, the SRAL uses real background information as negative samples to train the filter model. Secondly, we use the Average Peak to Correlation Energy (APCE) and the response value error between the two frames to adjust the learning rate together. In addition, the introduction of the regular term destroys the closed solution of CF, and this problem can be effectively solved by the use of the alternating direction method of multipliers (ADMM). Extensive experimental evaluations on three large tracking benchmarks are performed, which demonstrate the good performance of the proposed method over some of the state-of-the-art trackers.

This work was supported by the National Natural Science Foundation of China [grant number U1813220] and the Natural Science Foundation of Xinjiang Uygur Autonomous Region [grant number 2019D01C02].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gao, M., Jin, L., Jiang, Y., Guo, B.: Manifold Siamese network: a novel visual tracking convnet for autonomous vehicles. IEEE Trans. Intell. Transp. Syst. 21(4), 1612–1623 (2020)

    Article  Google Scholar 

  2. Zg, A., Gz, A., Hd, B., Xy, A.: Extended geometric models for stereoscopic 3D with vertical screen disparity. Displays 65, 101972 (2020)

    Article  Google Scholar 

  3. Manafifard, M., Ebadi, H., Moghaddam, H.A.: A survey on player tracking in soccer videos. Comput. Vis. Image Underst. 159, S1077314217300309 (2017)

    Article  Google Scholar 

  4. Bouget, D., Allan, M., Stoyanov, D., Jannin, P.: Vision-based and marker-less surgical tool detection and tracking: a review of the literature. Med. Image Anal. 35, 633–654 (2017)

    Article  Google Scholar 

  5. Galoogahi, H.K., Sim, T., Lucey, S.: Correlation filters with limited boundaries. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4630–4638 (2015)

    Google Scholar 

  6. Galoogahi, H.K., Fagg, A., Lucey, S.: Learning background-aware correlation filters for visual tracking. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 1144–1152 (2017)

    Google Scholar 

  7. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Learning spatially regularized correlation filters for visual tracking. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 4310–4318 (2015)

    Google Scholar 

  8. LukeŽic, A., Vojír, T., Zajc, L.C., Matas, J., Kristan, M.: Discriminative correlation filter with channel and spatial reliability. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4847–4856 (2017)

    Google Scholar 

  9. Wang, M., Liu, Y., Huang, Z.: Large margin object tracking with circulant feature maps. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4800–4808 (2017)

    Google Scholar 

  10. Boyd, S., Parikh, N., Chu, E.: Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers. Now Publishers Inc., Norwell (2011)

    MATH  Google Scholar 

  11. Wu, Y., Lim, J., Yang, M.H.: Object tracking benchmark. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1834–1848 (2015)

    Article  Google Scholar 

  12. Liang, P., Blasch, E., Ling, H.: Encoding color information for visual tracking: algorithms and benchmark. IEEE Trans. Image Process. 24(12), 5630–5644 (2015)

    Article  MathSciNet  Google Scholar 

  13. Kristan, M., et al.: The sixth visual object tracking VOT2018 challenge results. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11129, pp. 3–53. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11009-3_1

    Chapter  Google Scholar 

  14. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2544–2550 (2010)

    Google Scholar 

  15. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–893 (2005)

    Google Scholar 

  16. van de Weijer, J., Schmid, C., Verbeek, J., Larlus, D.: Learning color names for real-world applications. IEEE Trans. Image Process. 18(7), 1512–1523 (2009)

    Article  MathSciNet  Google Scholar 

  17. Chatfield, K., Simonyan, K., Vedaldi, A., Zisserman, A.: Return of the devil in the details: delving deep into convolutional nets. Computer Science (2014)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Computer Science (2014)

    Google Scholar 

  19. Henriques, J.F., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 583–596 (2015)

    Article  Google Scholar 

  20. Danelljan, M., Khan, F.S., Felsberg, M., Van De Weijer, J.: Adaptive color attributes for real-time visual tracking. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1090–1097 (2014)

    Google Scholar 

  21. Ma, C., Huang, J., Yang, X., Yang, M.: Hierarchical convolutional features for visual tracking. In: 2015 IEEE International Conference on Computer Vision (ICCV), pp. 3074–3082 (2015)

    Google Scholar 

  22. Li, Y., Zhu, J.: A scale adaptive kernel correlation filter tracker with feature integration. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8926, pp. 254–265. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16181-5_18

    Chapter  Google Scholar 

  23. Danelljan, M., Robinson, A., Shahbaz Khan, F., Felsberg, M.: Beyond correlation filters: learning continuous convolution operators for visual tracking. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 472–488. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_29

    Chapter  Google Scholar 

  24. Danelljan, M., Häger, G., Khan, F.S., Felsberg, M.: Discriminative scale space tracking. IEEE Trans. Pattern Anal. Mach. Intell. 39(8), 1561–1575 (2017). https://doi.org/10.1109/TPAMI.2016.2609928

  25. Ma, C., Yang, X., Zhang, C., Yang, M.: Long-term correlation tracking. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5388–5396 (2015)

    Google Scholar 

  26. Li, F., Tian, C., Zuo, W., Zhang, L., Yang, M.: Learning spatial-temporal regularized correlation filters for visual tracking. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4904–4913 (2018)

    Google Scholar 

  27. Dai, K., Wang, D., Lu, H., Sun, C., Li, J.: Visual tracking via adaptive spatially-regularized correlation filters. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4665–4674 (2019)

    Google Scholar 

  28. Danelljan, M., Bhat, G., Khan, F.S., Felsberg, M.: Eco: efficient convolution operators for tracking. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6931–6939 (2017)

    Google Scholar 

  29. Huang, Z., Fu, C., Li, Y., Lin, F., Lu, P.: Learning aberrance repressed correlation filters for real-time UAV tracking. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2891–2900 (2019)

    Google Scholar 

  30. Li, Y., Fu, C., Ding, F., Huang, Z., Lu, G.: AutoTrack: towards high-performance visual tracking for UAV with automatic spatio-temporal regularization. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11920–11929 (2020)

    Google Scholar 

  31. He, Z., Fan, Y., Zhuang, J., Dong, Y., Bai, H.: Correlation filters with weighted convolution responses. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 1992–2000 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lv, K., Yuan, L., He, L., Huang, R., Mei, J. (2021). Adaptive Learning Rate and Spatial Regularization Background Perception Filter for Visual Tracking. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics