Nothing Special   »   [go: up one dir, main page]

Skip to main content

Registration of 3D Point Clouds Based on Voxelization Simplify and Accelerated Iterative Closest Point Algorithm

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13069))

Included in the following conference series:

  • 2230 Accesses

Abstract

3D point clouds have lots of applications in the fields of reverse engineering, laser remote sensing and automatic driving. The registration of point clouds scanned form different positions or different angles is the basis for shape understanding and analysis. However, due to the complex environment and the large amount of data, the automatic registration of different scans is still a challenging problem. In this work, we propose a fast registration algorithm using the prior information under a voxel structure. In this algorithm, the point cloud is firstly voxelized and organized with a 3D voxel structure. Then, we take an initial alignment based on reliable parts according to prior information. Finally we refine registration using kd-tree to accelerate Iterative Closest Point algorithm. To evaluate our algorithm, we take both synthetic data and real data experiments. The results show that our algorithm is higher efficiency and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Torre-Ferrero, C., Llata, J.R., Alonso, L., Robla, S., Sarabia, E.G.: 3D point cloud registration based on a purpose-designed similarity measure. Eurasip J. Adv. Signal Process. 2012(1), 1–15 (2012)

    Google Scholar 

  2. Bennis, A., Bombardier, V., Thiriet, P., Brie, D.: Contours based approach for thermal image and terrestrial point cloud registration. ISPRS Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. 40(5), 97–101 (2013)

    Google Scholar 

  3. Bustos, A.J.P., Chin, T.J., Suter, D.: Fast rotation search with stereographic projections for 3D registration. In: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2014, pp. 3930–3937. IEEE Computer Society, USA (2014)

    Google Scholar 

  4. Chang, W.C., Pham, V.T.: 3-D point cloud registration using convolutional neural networks. Appl. Sci. 9(16), 3273.1–20 (2019)

    Google Scholar 

  5. Elbaz, G., Avraham, T., Fischer, A.: 3D point cloud registration for localization using a deep neural network auto-encoder. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2472–2481 (2017)

    Google Scholar 

  6. Fukai, H., Xu, G.: Fast and robust registration of multiple 3D point clouds. In: 2011 RO-MAN, pp. 331–336 (2011)

    Google Scholar 

  7. Geng, N., Ma, F., Yang, H., Li, B., Zhang, Z.: Neighboring constraint-based pairwise point cloud registration algorithm. Multimedia Tools Appl. 75(24), 16763–16780 (2015). https://doi.org/10.1007/s11042-015-2941-6

    Article  Google Scholar 

  8. Gojcic, Z., Zhou, C., Wegner, J.D., Guibas, L.J., Birdal, T.: Learning multiview 3D point cloud registration. In: 2020 IEEE Conference on CVPR (2020)

    Google Scholar 

  9. Gressin, A., Mallet, C., Demantke, J., David, N.: Towards 3D lidar point cloud registration improvement using optimal neighborhood knowledge. ISPRS J. Photogramm. Remote. Sens. 79(May), 240–251 (2013)

    Article  Google Scholar 

  10. Groß, J., Ošep, A., Leibe, B.: Alignnet-3D: fast point cloud registration of partially observed objects. In: International Conference on 3D Vision (3DV) (2019)

    Google Scholar 

  11. Hu, F., Ren, T., Shi, S.: Discrete point cloud registration using the 3D normal distribution transformation based newton iteration. J. Multimed. 9(7), 934–940 (2014)

    Google Scholar 

  12. Jiang, J., Cheng, J., Chen, X.: Registration for 3-D point cloud using angular-invariant feature. Neurocomputing 72(16–18), 3839–3844 (2009)

    Article  Google Scholar 

  13. Kim, P., Chen, J., Cho, Y.K.: Slam-driven robotic mapping and registration of 3D point clouds. Autom. Constr. 89(May), 38–48 (2018)

    Article  Google Scholar 

  14. Kjer, H.M., Wilm, J.: Evaluation of surface registration algorithms for PET motion correction. Ph.D. thesis, Technical University of Denmark Kgs Lyngby Denmark (2010)

    Google Scholar 

  15. Lachhani, K., Duan, J., Baghsiahi, H., Willman, E., Selviah, D.: Error metric for indoor 3D point cloud registration. In: Irish Machine Vision and Image Processing Conference (2014)

    Google Scholar 

  16. Li, N., Cheng, P., Sutton, M.A., Mcneill, S.R.: Three-dimensional point cloud registration by matching surface features with relaxation labeling method. Exp. Mech. 45, 71–82 (2005)

    Article  Google Scholar 

  17. Manafzade, M.M., Harati, A.: Point cloud registration using MSSIR: maximally stable shape index regions. In: 2013 21st Iranian Conference on Electrical Engineering (ICEE), pp. 1–6 (2013)

    Google Scholar 

  18. Manu: Rigid ICP registration. https://www.mathworks.com/matlabcentral/fileexchange/40888-rigid-icp-registration. Accessed 18 Aug 2020

  19. Marina, R., Reno, V., Nitti, M., DÓrazio, T., Stella, E.: A modified iterative closest point algorithm for 3D point cloud registration. Comput. Aided Civil Infrastruct. Eng. 31(7), 515–534 (2016)

    Google Scholar 

  20. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  21. Parra Bustos, A., Chin, T.: Guaranteed outlier removal for point cloud registration with correspondences. IEEE Trans. Pattern Anal. Mach. Intell. 40(12), 2868–2882 (2018)

    Article  Google Scholar 

  22. Pomerleau, F., Colas, F., Siegwart, R.: A review of point cloud registration algorithms for mobile robotics. Found. Trends Robot 4(1), 1–104 (2015)

    Article  Google Scholar 

  23. Rajendra, Y.D., et al.: Evaluation of partially overlapping 3D point cloud’s registration by using ICP variant and cloudcompare. In: ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 891–897 (2014)

    Google Scholar 

  24. Raposo, C., Barreto, J.P.: Using 2 point+normal sets for fast registration of point clouds with small overlap. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5652–5658 (2017)

    Google Scholar 

  25. Serafin, J., Grisetti, G.: NICP: dense normal based point cloud registration. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 742–749 (2015)

    Google Scholar 

  26. Sun, J., Zhang, J., Zhang, G.: An automatic 3D point cloud registration method based on regional curvature maps. Image Vision Comput. 56, 49–58 (2016)

    Article  Google Scholar 

  27. Thomas, A., Sunilkumar, A., Shylesh, S., Methirumangalath, S., Chen, D., Peethambaran, J.: TCM-ICP: transformation compatibility measure for registering multiple LIDAR scans. CoRR abs/2001.01129 (2020)

    Google Scholar 

  28. Watanabe, T., Niwa, T., Masuda, H.: Registration of point-clouds from terrestrial and portable laser scanners. Int. J. Autom. Technol. 10(2), 163–171 (2016)

    Article  Google Scholar 

  29. Xian, Y., Xiao, J., Wang, Y.: A fast registration algorithm of rock point cloud based on spherical projection and feature extraction. Front. Comput. Sci. 13(1), 170–182 (2019). https://doi.org/10.1007/s11704-016-6191-1

    Article  Google Scholar 

  30. Xiao, J., Adler, B., Zhang, H.: 3D point cloud registration based on planar surfaces. In: 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), pp. 40–45 (2012)

    Google Scholar 

  31. Xiong, H., Szedmak, S., Piater, J.: A study of point cloud registration with probability product kernel functions. In: Proceedings of the 2013 International Conference on 3D Vision, 3DV 2013, pp. 207–214. IEEE Computer Society, USA (2013)

    Google Scholar 

  32. Xu, Y., Boerner, R., Yao, W., Hoegner, L., Stilla, U.: Automated coarse registration of point clouds in 3D urban scenes using voxel based plane constraint. ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci. IV-2/W4, 185–191 (2017)

    Google Scholar 

  33. Yang, H., Shi, J., Carlone, L.: Teaser: fast and certifiable point cloud registration (2020)

    Google Scholar 

  34. Yang, J., Cao, Z., Zhang, Q.: A fast and robust local descriptor for 3D point cloud registration. Inf. Sci. 346, 163–179 (2016)

    Article  Google Scholar 

  35. Yu, C., Da, J.: A maximum feasible subsystem for globally optimal 3D point cloud registration. Sensors 18(2), 544.1–19 (2018)

    Google Scholar 

  36. Huang, Y., Da, F.P., Tang, L.: Research on algorithm of point cloud coarse registration. In: 2016 2nd IEEE International Conference on Computer and Communications (ICCC), pp. 1335–1339 (2016)

    Google Scholar 

  37. Zhang, X., Jian, L., Xu, M.: Robust 3D point cloud registration based on bidirectional maximum correntropy criterion. PLoS ONE 13(5), 1–15 (2018)

    Google Scholar 

  38. Le, H.M., Do, T.-T., Hoang, T., Cheung, N.-M.: SDRSAC: semidefinite-based randomized approach for robust point cloud registration without correspondences. In: IEEE Conference on CVPR, pp. 124–133 (2019)

    Google Scholar 

Download references

The work was supported by the National College Students innovation and entrepreneurship training program No. G201910022067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjun Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Li, H. (2021). Registration of 3D Point Clouds Based on Voxelization Simplify and Accelerated Iterative Closest Point Algorithm. In: Fang, L., Chen, Y., Zhai, G., Wang, J., Wang, R., Dong, W. (eds) Artificial Intelligence. CICAI 2021. Lecture Notes in Computer Science(), vol 13069. Springer, Cham. https://doi.org/10.1007/978-3-030-93046-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93046-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93045-5

  • Online ISBN: 978-3-030-93046-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics