Nothing Special   »   [go: up one dir, main page]

Skip to main content

Deep Neural Network for DrawiNg Networks, \({(DNN)^{\textit{2}\,}} \)

  • Conference paper
  • First Online:
Graph Drawing and Network Visualization (GD 2021)

Abstract

By leveraging recent progress of stochastic gradient descent methods, several works have shown that graphs could be efficiently laid out through the optimization of a tailored objective function. In the meantime, Deep Learning (DL) techniques achieved great performances in many applications. We demonstrate that it is possible to use DL techniques to learn a graph-to-layout sequence of operations thanks to a graph-related objective function. In this paper, we present a novel graph drawing framework called \({(DNN)^{\textit{2}\,}} \): Deep Neural Network for DrawiNg Networks. Our method uses Graph Convolution Networks to learn a model. Learning is achieved by optimizing a graph topology related loss function that evaluates \({(DNN)^{\textit{2}\,}} \)generated layouts during training. Once trained, the \({(DNN)^{\textit{2}\,}} \)model is able to quickly lay any input graph out. We experiment \({(DNN)^{\textit{2}\,}} \)and statistically compare it to optimization-based and regular graph layout algorithms. The results show that \({(DNN)^{\textit{2}\,}} \)performs well and are encouraging as the Deep Learning approach to Graph Drawing is novel and many leads for future works are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/HanKruiger/tsNET, consulted on February 2021.

  2. 2.

    http://www.graphdrawing.org/data.html, consulted on February 2021.

References

  1. Hong, S.-H., Nishizeki, T., Quan, W. (eds.): GD 2007. LNCS, vol. 4875. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77537-9

    Book  Google Scholar 

  2. Brandes, U., Pich, C.: Eigensolver methods for progressive multidimensional scaling of large data. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 42–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_6

    Chapter  MATH  Google Scholar 

  3. Cohen-Steiner, D., Kong, W., Sohler, C., Valiant, G.: Approximating the spectrum of a graph. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1263–1271 (2018)

    Google Scholar 

  4. Conover, W.J., Iman, R.L.: On multiple-comparisons procedures. Tech. rep., Technical report, Los Alamos Scientific Laboratory (1979)

    Google Scholar 

  5. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. arXiv preprint arXiv:1606.09375 (2016)

  6. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Espadoto, M., Hirata, N.S.T., Telea, A.C.: Deep learning multidimensional projections. Inf. Vis. 19(3), 247–269 (2020)

    Article  Google Scholar 

  8. Frick, A., Ludwig, A., Mehldau, H.: A fast adaptive layout algorithm for undirected graphs (extended abstract and system demonstration). In: Tamassia, R., Tollis, I.G. (eds.) GD 1994. LNCS, vol. 894, pp. 388–403. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-58950-3_393

    Chapter  Google Scholar 

  9. Giovannangeli, L., Bourqui, R., Giot, R., Auber, D.: Toward automatic comparison of visualization techniques: application to graph visualization. Vis. Inform. 4(2), 86–98 (2020)

    Article  Google Scholar 

  10. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  11. Haleem, H., Wang, Y., Puri, A., Wadhwa, S., Qu, H.: Evaluating the readability of force directed graph layouts: a deep learning approach. IEEE Comput. Graph. Appl. 39(4), 40–53 (2019)

    Article  Google Scholar 

  12. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011)

    Article  MathSciNet  Google Scholar 

  13. Hinton, G., Roweis, S.T.: Stochastic neighbor embedding. In: NIPS, vol. 15, pp. 833–840. Citeseer (2002)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (June 2016)

    Google Scholar 

  15. Kamada, T., Kawai, S., et al.: An algorithm for drawing general undirected graphs. Inf. Process. Lett. 31(1), 7–15 (1989)

    Article  MathSciNet  Google Scholar 

  16. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  17. Kruiger, J.F., Rauber, P.E., Martins, R.M., Kerren, A., Kobourov, S., Telea, A.C.: Graph layouts by t-SNE. In: Computer Graphics Forum, vol. 36, pp. 283–294. Wiley Online Library (2017)

    Google Scholar 

  18. Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)

    Article  Google Scholar 

  19. Kwon, O.-H., Crnovrsanin, T., Ma, K.-L.: What would a graph look like in this layout? A machine learning approach to large graph visualization. IEEE Trans. Vis. Comput. Graph. 24(1), 478–488 (2017)

    Article  Google Scholar 

  20. Kwon, O.-H., Ma, K.-L.: A deep generative model for graph layout. IEEE Trans. Vis. Comput. Graph. 26(1), 665–675 (2019)

    Article  Google Scholar 

  21. Leow, Y.Y., Laurent, T., Bresson, X.: GraphTSNE: a visualization technique for graph-structured data. arXiv preprint arXiv:1904.06915 (2019)

  22. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  23. Purchase, H.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1_67

    Chapter  Google Scholar 

  24. Purchase, H.C.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5), 501–516 (2002)

    Article  Google Scholar 

  25. Purchase, H.C.: Experimental Human-computer Interaction: A Practical Guide with Visual Examples. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  26. Purchase, H.C., Cohen, R.F., James, M.: Validating graph drawing aesthetics. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 435–446. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0021827

    Chapter  Google Scholar 

  27. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  28. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  29. Van Dongen, S.M.: Graph clustering by flow simulation. Ph.D. thesis (2000)

    Google Scholar 

  30. Wang, Q., Chen, Z., Wang, Y., Qu, H.: Applying machine learning advances to data visualization: a survey on ML4VIS. arXiv preprint arXiv:2012.00467 (2020)

  31. Wang, Y., Jin, Z., Wang, Q., Cui, W., Ma, T., Qu, H.: DeepDrawing: a deep learning approach to graph drawing. IEEE Trans. Vis. Comput. Graph. 26(1), 676–686 (2019)

    Google Scholar 

  32. Wang, Y., et al.: Ambiguityvis: visualization of ambiguity in graph layouts. IEEE Trans. Vis. Comput. Graph. 22(1), 359–368 (2015)

    Article  Google Scholar 

  33. Ware, C., Purchase, H., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Inf. Vis. 1(2), 103–110 (2002)

    Article  Google Scholar 

  34. Wu, A., et al.: Survey on artificial intelligence approaches for visualization data. arXiv preprint arXiv:2102.01330 (2021)

  35. Zheng, J.X., Pawar, S., Goodman, D.F.M.: Graph drawing by stochastic gradient descent. IEEE Trans. Vis. Comput. Graph. 25(9), 2738–2748 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loann Giovannangeli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Giovannangeli, L., Lalanne, F., Auber, D., Giot, R., Bourqui, R. (2021). Deep Neural Network for DrawiNg Networks, \({(DNN)^{\textit{2}\,}} \). In: Purchase, H.C., Rutter, I. (eds) Graph Drawing and Network Visualization. GD 2021. Lecture Notes in Computer Science(), vol 12868. Springer, Cham. https://doi.org/10.1007/978-3-030-92931-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-92931-2_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-92930-5

  • Online ISBN: 978-3-030-92931-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics