Abstract
We study a classic problem introduced thirty years ago by Eades and Wormald. Let \(G=(V,E,\lambda )\) be a weighted planar graph, where \(\lambda : E \rightarrow \mathbb {R}^+\) is a length function. The Fixed Edge-Length Planar Realization problem (FEPR for short) asks whether there exists a planar straight-line realization of G, i.e., a planar straight-line drawing of G where the Euclidean length of each edge \(e \in E\) is \(\lambda (e)\). Cabello, Demaine, and Rote showed that the FEPR problem is -hard, even when \(\lambda \) assigns the same value to all the edges and the graph is triconnected. Since the existence of large triconnected minors is crucial to the known -hardness proofs, in this paper we investigate the computational complexity of the FEPR problem for weighted 2-trees, which are \(K_4\)-minor free. We show its -hardness, even when \(\lambda \) assigns to the edges only up to four distinct lengths. Conversely, we show that the FEPR problem is linear-time solvable when \(\lambda \) assigns to the edges up to two distinct lengths, or when the input has a prescribed embedding. Furthermore, we consider the FEPR problem for weighted maximal outerplanar graphs and prove it to be linear-time solvable if their dual tree is a path, and cubic-time solvable if their dual tree is a caterpillar. Finally, we prove that the FEPR problem for weighted 2-trees is slice-wise polynomial in the length of the longest path.
This research was partially supported by MIUR Project “AHeAD” under PRIN 20174LF3T8, by H2020-MSCA-RISE project 734922 – “CONNECT”, and by Roma Tre University Azione 4 Project “GeoView”.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As in [12], our algorithms adopt the real RAM model, which is customary in computational geometry and supports standard arithmetic operations in constant time.
References
Abel, Z., Demaine, E.D., Demaine, M.L., Eisenstat, S., Lynch, J., Schardl, T.B.: Who needs crossings? Hardness of plane graph rigidity. In: Fekete, S.P., Lubiw, A. (eds.) 32nd International Symposium on Computational Geometry (SoCG 2016). LIPIcs, vol. 51, pp. 3:1–3:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.SoCG.2016.3
Alegría, C., Borrazzo, M., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M.: Planar straight-line realizations of 2-trees with prescribed edge lengths. CoRR abs/2108.09483 (2021). https://arxiv.org/abs/2108.09483
Alon, N., Feldheim, O.N.: Drawing outerplanar graphs using three edge lengths. Comput. Geom. 48(3), 260–267 (2015). https://doi.org/10.1016/j.comgeo.2014.10.006
Angelini, P., et al.: Anchored drawings of planar graphs. In: Duncan, C., Symvonis, A. (eds.) GD 2014. LNCS, vol. 8871, pp. 404–415. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45803-7_34
Angelini, P., et al.: Windrose planarity: embedding graphs with direction-constrained edges. ACM Trans. Algorithms 14(4), 54:1–54:24 (2018). https://doi.org/10.1145/3239561
Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979). https://doi.org/10.1016/0020-0190(79)90002-4
de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the plane. Int. J. Comput. Geom. Appl. 22(3), 187–206 (2012). https://doi.org/10.1142/S0218195912500045
Berger, B., Kleinberg, J.M., Leighton, F.T.: Reconstructing a three-dimensional model with arbitrary errors. J. ACM 46(2), 212–235 (1999). https://doi.org/10.1145/301970.301972
Blažej, V., Fiala, J., Liotta, G.: On the edge-length ratio of 2-trees. In: GD 2020. LNCS, vol. 12590, pp. 85–98. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-68766-3_7
Borrazzo, M., Frati, F.: On the planar edge-length ratio of planar graphs. J. Comput. Geom. 11(1), 137–155 (2020). https://doi.org/10.20382/jocg.v11i1a6
Brandes, U., Schlieper, B.: Angle and distance constraints on tree drawings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 54–65. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70904-6_7
Cabello, S., Demaine, E.D., Rote, G.: Planar embeddings of graphs with specified edge lengths. J. Graph Algorithms Appl. 11(1), 259–276 (2007). https://doi.org/10.7155/jgaa.00145
Capkun, S., Hamdi, M., Hubaux, J.: GPS-free positioning in mobile ad hoc networks. Clust. Comput. 5(2), 157–167 (2002). https://doi.org/10.1023/A:1013933626682
Chaplick, S.: Recognizing stick graphs with and without length constraints. J. Graph Algorithms Appl. 24(4), 657–681 (2020). https://doi.org/10.7155/jgaa.00524
Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(3), 485–524 (1991). https://doi.org/10.1007/BF02574703
Connelly, R.: On generic global rigidity. In: Gritzmann, P., Sturmfels, B. (eds.) Proceedings of a DIMACS Workshop on Applied Geometry And Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 147–156. DIMACS/AMS (1990). https://doi.org/10.1090/dimacs/004/11
Coullard, C.R., Lubiw, A.: Distance visibility graphs. Int. J. Comput. Geom. Appl. 2(4), 349–362 (1992). https://doi.org/10.1142/S0218195992000202
Da Lozzo, G., Devanny, W.E., Eppstein, D., Johnson, T.: Square-contact representations of partial 2-trees and triconnected simply-nested graphs. In: Okamoto, Y., Tokuyama, T. (eds.) 28th International Symposium on Algorithms and Computation (ISAAC 2017). LIPIcs, vol. 92, pp. 24:1–24:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.ISAAC.2017.24
Deng, T.: On the implementation and refinement of outerplanar graph algorithms. Master’s thesis, University of Windsor, Ontario, Canada (2007)
Devillers, O., Liotta, G., Preparata, F.P., Tamassia, R.: Checking the convexity of polytopes and the planarity of subdivisions. Comput. Geom. 11(3–4), 187–208 (1998). https://doi.org/10.1016/S0925-7721(98)00039-X
Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization of Graphs. Prentice-Hall, Hoboken (1999)
Di Battista, G., Tamassia, R.: On-line planarity testing. SIAM J. Comput. 25(5), 956–997 (1996). https://doi.org/10.1137/S0097539794280736
Di Battista, G., Tamassia, R., Tollis, I.G.: Constrained visibility representations of graphs. Inf. Process. Lett. 41(1), 1–7 (1992). https://doi.org/10.1016/0020-0190(92)90072-4
Di Giacomo, E., Didimo, W., Liotta, G.: Radial drawings of graphs: Geometric constraints and trade-offs. J. Discrete Algorithms 6(1), 109–124 (2008). https://doi.org/10.1016/j.jda.2006.12.007
Di Giacomo, E., Hančl, J., Liotta, Gi.: 2-Colored point-set embeddings of partial 2-trees. In: Uehara, R., Hong, S., Nandy, S.C. (eds.) WALCOM 2021. LNCS, vol. 12635, pp. 247–259. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68211-8_20
Eades, P., Wormald, N.C.: Fixed edge-length graph drawing is NP-hard. Disc. Appl. Math. 28(2), 111–134 (1990). https://doi.org/10.1016/0166-218X(90)90110-X
Geelen, J., Guo, A., McKinnon, D.: Straight line embeddings of cubic planar graphs with integer edge lengths. J. Graph Theory 58(3), 270–274 (2008). https://doi.org/10.1002/jgt.20304
Goodrich, M.T., Johnson, T.: Low ply drawings of trees and 2-trees. In: Durocher, S., Kamali, S. (eds.) Proceedings of the 30th Canadian Conference on Computational Geometry (CCCG 2018), pp. 2–10 (2018), http://www.cs.umanitoba.ca/%7Ecccg2018/papers/session1A-p1.pdf
Gutwenger, C., Mutzel, P.: A linear time implementation of SPQR-trees. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 77–90. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44541-2_8
Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992). https://doi.org/10.1137/0221008
Hendrickson, B.: The molecule problem: exploiting structure in global optimization. SIAM J. Optim. 5(4), 835–857 (1995). https://doi.org/10.1137/0805040
Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Comb. Theory, Ser. B 94(1), 1–29 (2005). https://doi.org/10.1016/j.jctb.2004.11.002
Lenhart, W., Liotta, G., Mondal, D., Nishat, R.I.: Planar and plane slope number of partial 2-trees. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 412–423. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4_36
Lubiw, A., Miltzow, T., Mondal, D.: The complexity of drawing a graph in a polygonal region. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp. 387–401. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5_28
Melkman, A.A.: On-line construction of the convex hull of a simple polyline. Inf. Process. Lett. 25(1), 11–12 (1987). https://doi.org/10.1016/0020-0190(87)90086-X
Mitchell, S.L.: Linear algorithms to recognize outerplanar and maximal outerplanar graphs. Inf. Process. Lett. 9(5), 229–232 (1979). https://doi.org/10.1016/0020-0190(79)90075-9
Moran, S., Wolfstahl, Y.: One-page book embedding under vertex-neighborhood constraints. SIAM J. Discrete Math. 3(3), 376–390 (1990). https://doi.org/10.1137/0403034
Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The cricket location-support system. In: Pickholtz, R.L., Das, S.K., Cáceres, R., Garcia-Luna-Aceves, J.J. (eds.) 6th Annual International Conference on Mobile Computing and Networking (MOBICOM 2000), pp. 32–43. ACM (2000). https://doi.org/10.1145/345910.345917
Rengarajan, S., Veni Madhavan, C.E.: Stack and queue number of 2-trees. In: Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 203–212. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0030834
Savarese, C., Rabaey, J., Beutel, J.: Location in distributed ad-hoc wireless sensor networks. In: 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings, vol. 4, pp. 2037–2040 (2001). https://doi.org/10.1109/ICASSP.2001.940391
Saxe, J.: Embeddability of Weighted Graphs in K-space is Strongly NP-hard. CMU-CS-80-102, Carnegie-Mellon University, Department of Computer Science, Pittsburgh (1980). https://books.google.it/books?id=vClAGwAACAAJ
Schaefer, M.: Realizability of graphs and linkages. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 461–482. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-0110-0_24
Silveira, R.I., Speckmann, B., Verbeek, K.: Non-crossing paths with geographic constraints. Discret. Math. Theor. Comput. Sci. 21(3), 1–13 (2019). https://doi.org/10.23638/DMTCS-21-3-15
Syslo, M.M.: Characterizations of outerplanar graphs. Discret. Math. 26(1), 47–53 (1979). https://doi.org/10.1016/0012-365X(79)90060-8
Tamassia, R.: Constraints in graph drawing algorithms. Constraints Int. J. 3(1), 87–120 (1998). https://doi.org/10.1023/A:1009760732249
Wiegers, M.: Recognizing outerplanar graphs in linear time. In: Tinhofer, G., Schmidt, G. (eds.) WG 1986. LNCS, vol. 246, pp. 165–176. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-17218-1_57
Yemini, Y.: Some theoretical aspects of position-location problems. In: 20th Annual Symposium on Foundations of Computer Science (FOCS 1979), pp. 1–8. IEEE Computer Society (1979). https://doi.org/10.1109/SFCS.1979.39
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Alegría, C., Borrazzo, M., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M. (2021). Planar Straight-Line Realizations of 2-Trees with Prescribed Edge Lengths. In: Purchase, H.C., Rutter, I. (eds) Graph Drawing and Network Visualization. GD 2021. Lecture Notes in Computer Science(), vol 12868. Springer, Cham. https://doi.org/10.1007/978-3-030-92931-2_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-92931-2_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92930-5
Online ISBN: 978-3-030-92931-2
eBook Packages: Computer ScienceComputer Science (R0)