Abstract
In this paper, we study the squared metric k-facility location problem, which generalizes the k-means problem in that each facility has a specific cost of opening it in the solution. The current best approximation guarantee for the squared metric k-facility location problem is a ratio of \(44.473+\epsilon \) based on a local search algorithm. We give a \((36.343+\epsilon )\)-approximation for the problem using the techniques of primal-dual and Lagrangian relaxation. We propose a new rounding approach that exploits the properties of the squared metric, which is the crucial step in getting the improved approximation ratio.
This work was supported by National Natural Science Foundation of China (61872450 and 62172446).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for \(k\)-means and Euclidean \(k\)-median by primal-dual algorithms. SIAM J. Comput. 49(4), FOCS17:97–FOCS17:156 (2020)
Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)
Arthur, D., Vassilvitskii, S.: \(k\)-means++: the advantages of careful seeding. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1027–1035 (2007)
Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristics for \(k\)-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)
Baev, I.D., Rajaraman, R., Swamy, C.: Approximation algorithms for data placement problems. SIAM J. Comput. 38(4), 1411–1429 (2008)
Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approximation for \(k\)-median and positive correlation in budgeted optimization. ACM Trans. Algor. 13(2), 23:1–23:31 (2017)
Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility location problems with outliers. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 642–651 (2001)
Charikar, M., Li, S.: A dependent LP-rounding approach for the \(k\)-median problem. In: Proceedings of the 39th International Colloquium on Automata, Languages, and Programming (ICALP), pp. 194–205 (2012)
Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for \(k\)-means and \(k\)-median in Euclidean and minor-free metrics. SIAM J. Comput. 48(2), 644–667 (2019)
Cura, T.: A parallel local search approach to solving the uncapacitated warehouse location problem. Comput. Ind. Eng. 59(4), 1000–1009 (2010)
Feng, Q., Zhang, Z., Shi, F., Wang, J.: An improved approximation algorithm for the \(k\)-means problem with penalties. In: Proceedings of the 13th International Workshop on Frontiers in Algorithmics (FAW), pp. 170–181 (2019)
Fernandes, C.G., Meira, L.A.A., Miyazawa, F.K., Pedrosa, L.L.C.: A systematic approach to bound factor-revealing LPs and its application to the metric and squared metric facility location problems. Math. Program. 153(2), 655–685 (2015)
Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for \(k\)-means in doubling metrics. SIAM J. Comput. 48(2), 452–480 (2019)
Golubchik, L., Khanna, S., Khuller, S., Thurimella, R., Zhu, A.: Approximation algorithms for data placement on parallel disks. ACM Trans. Algor. 5(4), 34:1–34:26 (2009)
Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. J. Algor. 31(1), 228–248 (1999)
Gupta, A., Guruganesh, G., Schmidt, M.: Approximation algorithms for aversion \(k\)-clustering via local \(k\)-median. In: Proceedings of the 43rd International Colloquium on Automata, Languages and Programming (ICALP), pp. 1–13 (2016)
Gupta, A., Tangwongsan, K.: Simpler analyses of local search algorithms for facility location. CoRR abs/0809.2554 (2008)
Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the red-blue median problem. Algorithmica 63(4), 795–814 (2012)
Hayrapetyan, A., Swamy, C., Tardos, É.: Network design for information networks. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 933–942 (2005)
Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM 50(6), 795–824 (2003)
Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and \(k\)-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM 48(2), 274–296 (2001)
Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman, R., Wu, A.Y.: A local search approximation algorithm for \(k\)-means clustering. Comput. Geom. 28, 89–112 (2004)
Li, S., Svensson, O.: Approximating \(k\)-median via pseudo-approximation. SIAM J. Comput. 45(2), 530–547 (2016)
Michel, L., Hentenryck, P.V.: A simple tabu search for warehouse location. Eur. J. Oper. Res. 157(3), 576–591 (2004)
Wang, S., Bi, J., Wu, J., Vasilakos, A.V.: CPHR: In-network caching for information-centric networking with partitioning and hash-routing. IEEE/ACM Trans. Netw. 24(5), 2742–2755 (2016)
Wu, C., Du, D., Xu, D.: An approximation algorithm for the \(k\)-median problem with uniform penalties via pseudo-solution. Theor. Comput. Sci. 749, 80–92 (2018)
Zhang, D., Xu, D., Wang, Y., Zhang, P., Zhang, Z.: A local search approximation algorithm for a squared metric \(k\)-facility location problem. J. Comb. Optim. 35(4), 1168–1184 (2018)
Zhang, P.: A new approximation algorithm for the \(k\)-facility location problem. Theor. Comput. Sci. 384(1), 126–135 (2007)
Zhang, Z., Feng, Q., Huang, J., Guo, Y., Xu, J., Wang, J.: A local search algorithm for \(k\)-means with outliers. Neurocomputing 450, 230–241 (2021)
Zhang, Z., Feng, Q., Xu, J., Wang, J.: An approximation algorithm for \(k\)-median with priorities. Sci. China Inf. Sci. 64(5), 150104 (2021)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Z., Feng, Q. (2021). An Improved Approximation Algorithm for Squared Metric k-Facility Location. In: Du, DZ., Du, D., Wu, C., Xu, D. (eds) Combinatorial Optimization and Applications. COCOA 2021. Lecture Notes in Computer Science(), vol 13135. Springer, Cham. https://doi.org/10.1007/978-3-030-92681-6_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-92681-6_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92680-9
Online ISBN: 978-3-030-92681-6
eBook Packages: Computer ScienceComputer Science (R0)