Abstract
This paper proposes a new mathematical formulation for the Hybrid Flow Shop problem under time-varying resources and chaining exact time-lag constraints. This formulation is named Discrete Continuous (DC) formulation to distinguish from the state-of-the-art Discrete-Time (DT) formulation in the literature. In the DC formulation, the starting time of jobs is modeled by a continuous variable, and its execution state is modeled with a binary one. The two formulations are benchmarked: the DC formulation always assures a feasible solution for any instance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Artigues, C.: On the strength of time-indexed formulations for the resource-constrained project scheduling problem. Oper. Res. Lett. 45(2), 154–159 (2017). https://doi.org/10.1016/j.orl.2017.02.001
Artigues, C., Michelon, P., Reusser, S.: Insertion techniques for static and dynamic resource-constrained project scheduling. Eur. J. Oper. Res. 149(2), 249–267 (2003). https://doi.org/10.1016/S0377-2217(02)00758-0
Chen, B., Zhang, X.: Scheduling coupled tasks with exact delays for minimum total job completion time. J. Sched. 24(2), 209–221 (2020). https://doi.org/10.1007/s10951-020-00668-1
Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource constraints: a branch and bound approach. Eur. J. Oper. Res. 29(3), 262–273 (1987). https://doi.org/10.1016/0377-2217(87)90240-2
Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research Handbook. Springer, Heidelberg (2006). https://doi.org/10.1007/b101924
Gnägi, M., Zimmermann, A., Trautmann, N.: A continuous-time unit-based MILP formulation for the resource-constrained project scheduling problem. In: 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (2018). https://doi.org/10.1109/IEEM.2018.8607337
Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010). https://doi.org/10.1016/j.ejor.2009.11.005
Hartmann, S., Briskorn, D.: An updated survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. (2021). https://doi.org/10.1016/j.ejor.2021.05.004
Herroelen, W.S.: Resource-constrained project scheduling—the state of the art. J. Oper. Res. Soc. 23(3), 261–275 (1972). https://doi.org/10.1057/jors.1972.48
Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Event-based MILP models for resource-constrained project scheduling problems. Comput. Oper. Res. 38(1), 3–13 (2011). https://doi.org/10.1016/j.cor.2009.12.011
Kopanos, G., Kyriakidis, T.S., Georgiadis, M.: New continuous-time and discrete-time mathematical formulations for resource-constrained project scheduling problems. Comput. Chem. Eng. (2014). https://doi.org/10.1016/j.compchemeng.2014.05.009
Mika, M., Waligóra, G., Wȩglarz, J.: Overview and state of the art. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Management and Scheduling Vol.1. IHIS, pp. 445–490. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-05443-8_21
Nguyen, N.Q., Yalaoui, F., Amodeo, L., Chehade, H., Toggenburger, P.: Total completion time minimization for machine scheduling problem under time windows constraints with jobs’ linear processing rate function. Comput. Oper. Res. 90, 110–124 (2018). https://doi.org/10.1016/j.cor.2017.09.015
Patterson, J.H., Huber, W.D.: A horizon-varying, zero-one approach to project scheduling. Manag. Sci. 20(6), 990–998 (1974). https://doi.org/10.1287/mnsc.20.6.990
Patterson, J.H., Roth, G.W.: Scheduling a project under multiple resource constraints: a zero-one programming approach. AIIE Trans. 8(4), 449–455 (1976). https://doi.org/10.1080/05695557608975107
Pritsker, A.A.B., Watters, L.J., Wolfe, P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manag. Sci. 16(1), 93–108 (1969)
Rainer, K., Sprecher, A.: The Library PSBLIB (March 2005). http://www.om-db.wi.tum.de/psplib/library.html
Rihm, T.: Applications of Mathematical Programming in Personnel Scheduling. Dissertation, Universität Bern (2017)
Tesch, A.: Compact MIP models for the resource-constrained project scheduling problem. Master thesis, Technische Universitat Berlin (2015)
Tesch, A.: Improved compact models for the resource-constrained project scheduling problem. In: Fink, A., Fügenschuh, A., Geiger, M.J. (eds.) Operations Research Proceedings 2016. Operations Research Proceedings, pp. 25–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55702-1
Tesch, A.: A polyhedral study of event-based models for the resource-constrained project scheduling problem. J. Sched. (2020). https://doi.org/10.1007/S10951-020-00647-6
Tran, Q.N.H., et al.: Optimization of chemotherapy planning. In: International Conference on Optimization and Learning (OLA2020), Cadiz, Spain (February 2020)
Tran, Q.N.H., Nguyen, N.Q., Chehade, H.: TNCY-I (September 2021). https://github.com/qnhant5010/TNCY-I
Weglarz, J. (ed.): Project Scheduling: Recent Models, Algorithms and Applications. International Series in Operations Research & Management Science. Springer, US (1999). https://doi.org/10.1007/978-1-4615-5533-9
Yalaoui, F., Nguyen, N.Q.: Identical machine scheduling problem with sequence-dependent setup times: MILP formulations computational study. Am. J. Oper. Res. 11(01), 15 (2021). https://doi.org/10.4236/ajor.2021.111002
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Tran, Q.N.H., Nguyen, N.Q., Chehade, H., Yalaoui, F., Dugardin, F. (2022). A New Mathematical Model for Hybrid Flow Shop Under Time-Varying Resource and Exact Time-Lag Constraints. In: Le Thi, H.A., Pham Dinh, T., Le, H.M. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. MCO 2021. Lecture Notes in Networks and Systems, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-92666-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-92666-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-92665-6
Online ISBN: 978-3-030-92666-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)