Nothing Special   »   [go: up one dir, main page]

Skip to main content

A New Mathematical Model for Hybrid Flow Shop Under Time-Varying Resource and Exact Time-Lag Constraints

  • Conference paper
  • First Online:
Modelling, Computation and Optimization in Information Systems and Management Sciences (MCO 2021)

Abstract

This paper proposes a new mathematical formulation for the Hybrid Flow Shop problem under time-varying resources and chaining exact time-lag constraints. This formulation is named Discrete Continuous (DC) formulation to distinguish from the state-of-the-art Discrete-Time (DT) formulation in the literature. In the DC formulation, the starting time of jobs is modeled by a continuous variable, and its execution state is modeled with a binary one. The two formulations are benchmarked: the DC formulation always assures a feasible solution for any instance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artigues, C.: On the strength of time-indexed formulations for the resource-constrained project scheduling problem. Oper. Res. Lett. 45(2), 154–159 (2017). https://doi.org/10.1016/j.orl.2017.02.001

    Article  MathSciNet  MATH  Google Scholar 

  2. Artigues, C., Michelon, P., Reusser, S.: Insertion techniques for static and dynamic resource-constrained project scheduling. Eur. J. Oper. Res. 149(2), 249–267 (2003). https://doi.org/10.1016/S0377-2217(02)00758-0

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, B., Zhang, X.: Scheduling coupled tasks with exact delays for minimum total job completion time. J. Sched. 24(2), 209–221 (2020). https://doi.org/10.1007/s10951-020-00668-1

    Article  MathSciNet  Google Scholar 

  4. Christofides, N., Alvarez-Valdes, R., Tamarit, J.M.: Project scheduling with resource constraints: a branch and bound approach. Eur. J. Oper. Res. 29(3), 262–273 (1987). https://doi.org/10.1016/0377-2217(87)90240-2

    Article  MathSciNet  MATH  Google Scholar 

  5. Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research Handbook. Springer, Heidelberg (2006). https://doi.org/10.1007/b101924

  6. Gnägi, M., Zimmermann, A., Trautmann, N.: A continuous-time unit-based MILP formulation for the resource-constrained project scheduling problem. In: 2018 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) (2018). https://doi.org/10.1109/IEEM.2018.8607337

  7. Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207(1), 1–14 (2010). https://doi.org/10.1016/j.ejor.2009.11.005

    Article  MathSciNet  MATH  Google Scholar 

  8. Hartmann, S., Briskorn, D.: An updated survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. (2021). https://doi.org/10.1016/j.ejor.2021.05.004

    Article  MATH  Google Scholar 

  9. Herroelen, W.S.: Resource-constrained project scheduling—the state of the art. J. Oper. Res. Soc. 23(3), 261–275 (1972). https://doi.org/10.1057/jors.1972.48

    Article  MATH  Google Scholar 

  10. Koné, O., Artigues, C., Lopez, P., Mongeau, M.: Event-based MILP models for resource-constrained project scheduling problems. Comput. Oper. Res. 38(1), 3–13 (2011). https://doi.org/10.1016/j.cor.2009.12.011

    Article  MathSciNet  MATH  Google Scholar 

  11. Kopanos, G., Kyriakidis, T.S., Georgiadis, M.: New continuous-time and discrete-time mathematical formulations for resource-constrained project scheduling problems. Comput. Chem. Eng. (2014). https://doi.org/10.1016/j.compchemeng.2014.05.009

  12. Mika, M., Waligóra, G., Wȩglarz, J.: Overview and state of the art. In: Schwindt, C., Zimmermann, J. (eds.) Handbook on Project Management and Scheduling Vol.1. IHIS, pp. 445–490. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-05443-8_21

    Chapter  Google Scholar 

  13. Nguyen, N.Q., Yalaoui, F., Amodeo, L., Chehade, H., Toggenburger, P.: Total completion time minimization for machine scheduling problem under time windows constraints with jobs’ linear processing rate function. Comput. Oper. Res. 90, 110–124 (2018). https://doi.org/10.1016/j.cor.2017.09.015

    Article  MathSciNet  MATH  Google Scholar 

  14. Patterson, J.H., Huber, W.D.: A horizon-varying, zero-one approach to project scheduling. Manag. Sci. 20(6), 990–998 (1974). https://doi.org/10.1287/mnsc.20.6.990

    Article  MATH  Google Scholar 

  15. Patterson, J.H., Roth, G.W.: Scheduling a project under multiple resource constraints: a zero-one programming approach. AIIE Trans. 8(4), 449–455 (1976). https://doi.org/10.1080/05695557608975107

    Article  Google Scholar 

  16. Pritsker, A.A.B., Watters, L.J., Wolfe, P.M.: Multiproject scheduling with limited resources: a zero-one programming approach. Manag. Sci. 16(1), 93–108 (1969)

    Article  Google Scholar 

  17. Rainer, K., Sprecher, A.: The Library PSBLIB (March 2005). http://www.om-db.wi.tum.de/psplib/library.html

  18. Rihm, T.: Applications of Mathematical Programming in Personnel Scheduling. Dissertation, Universität Bern (2017)

    Google Scholar 

  19. Tesch, A.: Compact MIP models for the resource-constrained project scheduling problem. Master thesis, Technische Universitat Berlin (2015)

    Google Scholar 

  20. Tesch, A.: Improved compact models for the resource-constrained project scheduling problem. In: Fink, A., Fügenschuh, A., Geiger, M.J. (eds.) Operations Research Proceedings 2016. Operations Research Proceedings, pp. 25–30. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-55702-1

  21. Tesch, A.: A polyhedral study of event-based models for the resource-constrained project scheduling problem. J. Sched. (2020). https://doi.org/10.1007/S10951-020-00647-6

    Article  MathSciNet  MATH  Google Scholar 

  22. Tran, Q.N.H., et al.: Optimization of chemotherapy planning. In: International Conference on Optimization and Learning (OLA2020), Cadiz, Spain (February 2020)

    Google Scholar 

  23. Tran, Q.N.H., Nguyen, N.Q., Chehade, H.: TNCY-I (September 2021). https://github.com/qnhant5010/TNCY-I

  24. Weglarz, J. (ed.): Project Scheduling: Recent Models, Algorithms and Applications. International Series in Operations Research & Management Science. Springer, US (1999). https://doi.org/10.1007/978-1-4615-5533-9

  25. Yalaoui, F., Nguyen, N.Q.: Identical machine scheduling problem with sequence-dependent setup times: MILP formulations computational study. Am. J. Oper. Res. 11(01), 15 (2021). https://doi.org/10.4236/ajor.2021.111002

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quoc Nhat Han Tran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tran, Q.N.H., Nguyen, N.Q., Chehade, H., Yalaoui, F., Dugardin, F. (2022). A New Mathematical Model for Hybrid Flow Shop Under Time-Varying Resource and Exact Time-Lag Constraints. In: Le Thi, H.A., Pham Dinh, T., Le, H.M. (eds) Modelling, Computation and Optimization in Information Systems and Management Sciences. MCO 2021. Lecture Notes in Networks and Systems, vol 363. Springer, Cham. https://doi.org/10.1007/978-3-030-92666-3_8

Download citation

Publish with us

Policies and ethics